Do you want to publish a course? Click here

Observation of a Group of Dark Rogue Waves in a Telecommunication Optical Fiber

197   0   0.0 ( 0 )
 Added by Stefan Wabnitz
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over the past decade, the rogue wave debate has stimulated the comparison of predictions and observations among different branches of wave physics, particularly between hydrodynamics and optics, in situations where analogous dynamical behaviors can be identified, thanks to the use of common universal models. Although the scalar nonlinear Schroedinger equation (NLSE) has constantly played a central role for rogue wave investigations, moving beyond the standard NLSE model is relevant and needful for describing more general classes of physical systems and applications. In this direction, the coupled NLSEs are known to play a pivotal role for the understanding of the complex wave dynamics in hydrodynamics and optics. Benefiting from the advanced technology of high-speed telecommunication-grade components, and relying on a careful design of the nonlinear propagation of orthogonally-polarized optical pump waves in a randomly birefringent telecom fiber, this work explores, both theoretically and experimentally, the rogue wave dynamics governed by such coupled NLSEs. We report, for the first time, the evidence of a group of three dark rogue waves, the so-called dark three-sister rogue waves, where experiments, numerics, and analytics show a very good consistency.



rate research

Read More

Random excitation of intense periodic highly-localized single-cycle light pulses in a stochastic background by continuous-wave stimulated Brillouin scattering in long optical fibers with weak feedback is found experimentally. Events with low period numbers are dominant and the optical feedback is crucial for the phenomenon. A three-wave coupling model for the phenomenon is proposed. The results are in good qualitative agreement with the observed phenomenon. The latter should be relevant to the understanding of similar rogue wave events in other nonlinear dissipative systems.
Numerical simulations are used to discuss various aspects of optical rogue wave statistics observed in noise-driven fiber supercontinuum generation associated with highly incoherent spectra. In particular, we consider how long wavelength spectral filtering influences the characteristics of the statistical distribution of peak power, and we contrast the statistics of the spectrally filtered SC with the statistics of both the peak power of the most red-shifted soliton in the SC and the maximum peak power across the full temporal field with no spectral selection. For the latter case, we show that the unfiltered statistical distribution can still exhibit a long-tail, but the extreme-events in this case correspond to collisions between solitons of different frequencies. These results confirm the importance of collision dynamics in supercontinuum generation. We also show that the collision-induced events satisfy an extended hydrodynamic definition of rogue wave characteristics.
We present a numerical study of the evolution dynamics of ``optical rogue waves, statistically-rare extreme red-shifted soliton pulses arising from supercontinuum generation in photonic crystal fiber [D. R. Solli et al. Nature Vol. 450, 1054-1058 (2007)]. Our specific aim is to use nonlinear Schrodinger equation simulations to identify ways in which the rogue wave dynamics can be actively controlled, and we demonstrate that rogue wave generation can be enhanced by an order of magnitude through a small modulation across the input pulse envelope and effectively suppressed through the use of a sliding frequency filter.
We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.
There are many examples in physics of systems showing rogue wave behaviour, the generation of high amplitude events at low probability. Although initially studied in oceanography, rogue waves have now been seen in many other domains, with particular recent interest in optics. Although most studies in optics have focussed on how nonlinearity can drive rogue wave emergence, purely linear effects have also been shown to induce extreme wave amplitudes. In this paper, we report a detailed experimental study of linear rogue waves in an optical system, using a spatial light modulator to impose random phase structure on a coherent optical field. After free space propagation, different random intensity patterns are generated, including partially-developed speckle, a broadband caustic network, and an intermediate pattern with characteristics of both speckle and caustic structures. Intensity peaks satisfying statistical criteria for rogue waves are seen especially in the case of the caustic network, and are associated with broader spatial spectra. In addition, the electric field statistics of the intermediate pattern shows properties of an optical sea with near-Gaussian statistics in elevation amplitude, and trough-to-crest statistics that are near-Rayleigh distributed but with an extended tail where a number of rogue wave events are observed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا