No Arabic abstract
Charge transport is a revealing probe of the quantum properties of materials. Strong interactions can blur charge carriers resulting in a poorly understood quantum soup. Here we study the conductivity of the Fermi-Hubbard model, a testing ground for strong interaction physics, in a clean quantum system - ultracold $^6$Li in a 2D optical lattice. We determine the charge diffusion constant in our system by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity, which exhibits a linear temperature dependence and exceeds the Mott-Ioffe-Regel limit, two characteristic signatures of a bad metal. The techniques we develop here may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.
Using quantum gas microscopy we study the late-time effective hydrodynamics of an isolated cold-atom Fermi-Hubbard system subject to an external linear potential (a tilt). The tilt is along one of the principal directions of the two-dimensional (2D) square lattice and couples mass transport to local heating through energy conservation. We study transport and thermalization in our system by observing the decay of prepared initial density waves as a function of wavelength $lambda$ and tilt strength and find that the associated decay time $tau$ crosses over as the tilt strength is increased from characteristically diffusive to subdiffusive with $tauproptolambda^4$. In order to explain the underlying physics we develop a hydrodynamic model that exhibits this crossover. For strong tilts, the subdiffusive transport rate is set by a thermal diffusivity, which we are thus able to measure as a function of tilt in this regime. We further support our understanding by probing the local inverse temperature of the system at strong tilts, finding good agreement with our theoretical predictions. Finally, we discuss the relation of the strongly tilted limit of our system to recently studied 1D models which may exhibit nonergodic dynamics.
Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with both energy and momentum resolution, providing detailed information about strongly interacting materials. ARPES is a direct probe of fermion pairing, and hence a natural technique to study the development of superconductivity in a variety of experimental systems ranging from high temperature superconductors to unitary Fermi gases. In these systems a remnant gap-like feature persists in the normal state, which is referred to as a pseudogap. A quantitative understanding of pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but developing this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi-Hubbard system across the BCS-BEC crossover and comparing to quantum Monte Carlo calculations. We find evidence for a pseudogap in our system that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments.
We experimentally and numerically investigate the sudden expansion of fermions in a homogeneous one-dimensional optical lattice. For initial states with an appreciable amount of doublons, we observe a dynamical phase separation between rapidly expanding singlons and slow doublons remaining in the trap center, realizing the key aspect of fermionic quantum distillation in the strongly-interacting limit. For initial states without doublons, we find a reduced interaction dependence of the asymptotic expansion speed compared to bosons, which is explained by the interaction energy produced in the quench.
We use quantum kinetic theory to calculate the thermoelectric transport properties of the 2D single band Fermi-Hubbard model in the weak coupling limit. For generic filling, we find that the high-temperature limiting behaviors of the electrical ($sim T$) and thermal ($sim T^2$) resistivities persist down to temperatures of order the hopping matrix element $Tsim t$, almost an order of magnitude below the bandwidth. At half filling, perfect nesting leads to anomalous low temperature scattering and nearly $T$-linear electrical resistivity at all temperatures. We hypothesize that the $T$-linear resistivity observed in recent cold atom experiments is continuously connected to this weak coupling physics and suggest avenues for experimental verification. We find a number of other novel thermoelectric results, such as a low-temperature Wiedemann-Franz law with Lorenz coefficient $5pi^2/36$.
The attractive Fermi-Hubbard model is the simplest theoretical model for studying pairing and superconductivity of fermions on a lattice. Although its s-wave pairing symmetry excludes it as a microscopic model for high-temperature superconductivity, it exhibits much of the relevant phenomenology, including a short-coherence length at intermediate coupling and a pseudogap regime with anomalous properties. Here we study an experimental realization of this model using a two-dimensional (2D) atomic Fermi gas in an optical lattice. Our site-resolved measurements on the normal state reveal checkerboard charge-density-wave correlations close to half-filling. A hidden SU(2) pseudo-spin symmetry of the Hubbard model at half-filling guarantees superfluid correlations in our system, the first evidence for such correlations in a single-band Hubbard system of ultracold fermions. Compared to the paired atom fraction, we find the charge-density-wave correlations to be a much more sensitive thermometer, useful for optimizing cooling into superfluid phases in future experiments.