Indentation of a two-dimensional bonded elastic layer with surface tension


Abstract in English

Surface tension is a prominent factor for the deformation of solids at micro-/nano-scale. This paper investigates the effects of surface tension on the two-dimensional contact problems of an elastic layer bonded to the rigid substrate. Under the plane strain assumption, the elastic field induced by a uniformly distributed pressure within a finite width is formulated by applying the Fourier integral transform, and the limiting process leading to the solutions for a line force brings the requisite surface Greens function. For the indentation of an elastic layer by a rigid cylinder, the corresponding singular integral equation is derived, and subsequently solved by using an effective numerical method based on Gauss-Chebyshev quadrature formula. It is found from the theoretical and numerical results that the existence of surface tension strongly enhances the hardness of the elastic layer and significantly affects the distribution of contact pressure, when the size of contact region is comparable to the elastocapillary length. In addition, an approximated relationship between external load and half-width of contact is generalized in an explicit and concise form, which is useful and convenient for practical applications.

Download