Do you want to publish a course? Click here

The lower central and derived series of the braid groups of compact surfaces

114   0   0.0 ( 0 )
 Added by John Guaschi
 Publication date 2018
  fields
and research's language is English
 Authors John Guaschi




Ask ChatGPT about the research

Let M be a compact surface, either orientable or non-orientable. We study the lower central and derived series of the braid and pure braid groups of M in order to determine the values of n for which B_n(M) and P_n(M) are residually nilpotent or residually soluble. First, we solve this problem for the case where M is the 2-torus. We then give a general description of these series for an arbitrary semi-direct product that allows us to calculate explicitly the lower central series of P_2(K), where K is the Klein bottle, and to give an estimate for the derived series of P_n(K). Finally, if M is a non-orientable compact surface without boundary, we determine the values of n for which B_n(M) is residually nilpotent or residually soluble in the cases that were not already known in the literature.



rate research

Read More

Generalising previous results on classical braid groups by Artin and Lin, we determine the values of m, n $in$ N for which there exists a surjection between the n-and m-string braid groups of an orientable surface without boundary. This result is essentially based on specific properties of their lower central series, and the proof is completely combinatorial. We provide similar but partial results in the case of orientable surfaces with boundary components and of non-orientable surfaces without boundary. We give also several results about the classification of different representations of surface braid groups in symmetric groups.
208 - Paolo Bellingeri 2011
We consider exact sequences and lower central series of surface braid groups and we explain how they can prove to be useful for obtaining representations for surface braid groups. In particular, using a completely algebraic framework, we describe the notion of extension of a representation introduced and studied recently by An and Ko and independently by Blanchet.
Let $n, k geq 3$. In this paper, we analyse the quotient group $B_n/Gamma_k(P_n)$ of the Artin braid group $B_n$ by the subgroup $Gamma_k(P_n)$ belonging to the lower central series of the Artin pure braid group $P_n$. We prove that it is an almost-crystallographic group. We then focus more specifically on the case $k=3$. If $n geq 5$, and if $tau in N$ is such that $gcd(tau, 6) = 1$, we show that $B_n/Gamma_3 (P_n)$ possesses torsion $tau$ if and only if $S_n$ does, and we prove that there is a one-to-one correspondence between the conjugacy classes of elements of order $tau$ in $B_n/Gamma_3 (P_n)$ with those of elements of order $tau$ in the symmetric group $S_n$. We also exhibit a presentation for the almost-crystallographic group $B_n/Gamma_3 (P_n)$. Finally, we obtain some $4$-dimensional almost-Bieberbach subgroups of $B_3/Gamma_3 (P_3)$, we explain how to obtain almost-Bieberbach subgroups of $B_4/Gamma_3(P_4)$ and $B_3/Gamma_4(P_3)$, and we exhibit explicit elements of order $5$ in $B_5/Gamma_3 (P_5)$.
93 - Jean Fromentin 2020
We introduce an algorithmic framework to investigate spherical and geodesic growth series of braid groups relatively to the Artins or Birman-Ko-Lees generators. We present our experimentations in the case of three and four strands and conjecture rational expressions for the spherical growth series with respect to the Birman-Ko-Lees generators.
Motivated by the construction of free quandles and Dehn quandles of orientable surfaces, we introduce Dehn quandles of groups with respect to their subsets. As a characterisation, we prove that Dehn quandles are precisely those quandles which embed naturally into their enveloping groups. We prove that the enveloping group of the Dehn quandle of a given group with respect to its generating set is a central extension of that group, and that enveloping groups of Dehn quandles of Artin groups and link groups with respect to their standard generating sets are the groups themselves. We discuss orderability of Dehn quandles and prove that free involutory quandles are left orderable whereas certain generalised Alexander quandles are bi-orderable. Specialising to surfaces, we give generating sets for Dehn quandles of mapping class groups of orientable surfaces with punctures and compute their automorphism groups. As applications, we recover a result of Niebrzydowski and Przytycki proving that the knot quandle of the trefoil knot is isomorphic to the Dehn quandle of the torus and also extend a result of Yetter on epimorphisms of Dehn quandles of orientable surfaces onto certain involutory homological quandles. Finally, we show that involutory quotients of Dehn quandles of closed orientable surfaces of genus less than four are finite.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا