Do you want to publish a course? Click here

The extremely truncated circumstellar disc of V410 X-ray 1: a precursor to TRAPPIST-1?

98   0   0.0 ( 0 )
 Added by Dominika Boneberg
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Protoplanetary discs around brown dwarfs and very low mass stars offer some of the best prospects for forming Earth-sized planets in their habitable zones. To this end, we study the nature of the disc around the very low mass star V410 X-ray 1, whose SED is indicative of an optically thick and very truncated dust disc, with our modelling suggesting an outer radius of only 0.6 au. We investigate two scenarios that could lead to such a truncation, and find that the observed SED is compatible with both. The first scenario involves the truncation of both the dust and gas in the disc, perhaps due to a previous dynamical interaction or the presence of an undetected companion. The second scenario involves the fact that a radial location of 0.6 au is close to the expected location of the H$_2$O snowline in the disc. As such, a combination of efficient dust growth, radial migration, and subsequent fragmentation within the snowline leads to an optically thick inner dust disc and larger, optically thin outer dust disc. We find that a firm measurement of the CO $J=2$--1 line flux would enable us to distinguish between these two scenarios, by enabling a measurement of the radial extent of gas in the disc. Many models we consider contain at least several Earth-masses of dust interior to 0.6 au, suggesting that V410 X-ray 1 could be a precursor to a system with tightly-packed inner planets, such as TRAPPIST-1.



rate research

Read More

The nearby (d = 12 pc) M8 dwarf star TRAPPIST-1 (2MASS J23062928-0502285) hosts a compact system of at least seven exoplanets with sizes similar to Earth. Given its importance for testing planet formation and evolution theories, and for assessing the prospects for habitability among Earth-size exoplanets orbiting the most common type of star in the Galaxy, we present a comprehensive assessment of the age of this system. We collate empirical age constraints based on the color-absolute magnitude diagram, average density, lithium absorption, surface gravity features, metallicity, kinematics, rotation, and magnetic activity; and conclude that TRAPPIST-1 is a transitional thin/thick disk star with an age of 7.6$pm$2.2 Gyr. The stars color-magnitude position is consistent with it being slightly metal-rich ([Fe/H] $simeq$ +0.06), in line with its previously reported near-infrared spectroscopic metallicity; and it has a radius (R = 0.121$pm$0.003 R$_{odot}$) that is larger by 8-14% compared to solar-metallicity evolutionary models. We discuss some implications of the old age of this system with regard to the stability and habitability of its planets.
The signatures of planets hosted by M dwarfs are more readily detected with transit photometry and radial velocity methods than those of planets around larger stars. Recently, transit photometry was used to discover seven planets orbiting the late-M dwarf TRAPPIST-1. Three of TRAPPIST-1s planets fall in the Habitable Zone, a region where liquid water could exist on the planetary surface given appropriate planetary conditions. We aim to investigate the habitability of the TRAPPIST-1 planets by studying the stars activity and its effect on the planets. We analyze previously-published space- and ground-based light curves and show the photometrically-determined rotation period of TRAPPIST-1 appears to vary over time due to complicated, evolving surface activity. The dramatic changes of the surface of TRAPPIST-1 suggest that rotation periods determined photometrically may not be reliable for this and similarly active stars. While the activity of the star is low, we use the premise of the cosmic shoreline to provide evidence that the TRAPPIST-1 environment has potentially led to the erosion of possible planetary atmospheres by extreme ultraviolet stellar emission.
We present spectroscopic observations of the Be/X-ray binary X Per obtained during the period December 2017 - January 2020 (MJD~58095 - MJD~58865). In December 2017 the $Halpha$, $Hbeta$, and HeI 6678 emission lines were symmetric with violet-to-red peak ratio $V/R approx 1$. During the first part of the period (December 2017 - August 2018) the V/R-ratio decreased to 0.5 and the asymmetry developed simultaneously in all three lines. In September 2018, a third component with velocity $approx 250$~km~s$^{-1}$ appeared on the red side of the HeI line profile. Later this component emerged in $Hbeta$, accompanied by the appearance of a red shoulder in $Halpha$. Assuming that it is due to an eccentric wave in the circumstellar disc, we find that the eccentric wave appeared first in the innermost part of the disc, it spreads out with outflowing velocity $v_{wave} approx 1.1 pm 0.2 $~km~s$^{-1}$, and the eccentricity of the eccentric wave is $e_{wave} approx 0.29 pm 0.07$. A detailed understanding of the origin of such eccentricities would have applications to a wide range of systems from planetary rings to AGNs.
125 - C. Pinte , D.J. Price , F. Menard 2018
Discs of gas and dust surrounding young stars are the birthplace of planets. However, direct detection of protoplanets forming within discs has proved elusive to date. We present the detection of a large, localized deviation from Keplerian velocity in the protoplanetary disc surrounding the young star HD163296. The observed velocity pattern is consistent with the dynamical effect of a two Jupiter-mass planet orbiting at a radius $approx$ 260au from the star.
We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its July 2014 outburst. The spectrum is soft with strong evidence for a broad Fe Kalpha line. Modeled with a relativistically broadened reflection model, we find that the inner disk is truncated with an inner radius of 15+/-3 R_G. The disk is likely truncated by either the boundary layer and/or a magnetic field. Associating the truncated inner disk with pressure from a magnetic field gives an upper limit of B<5+/-2x10^8G. Although the radius is truncated far from the stellar surface, material is still reaching the neutron star surface as evidenced by the X-ray burst present in the t NuSTAR observation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا