Inexact Non-Convex Newton-Type Methods


Abstract in English

For solving large-scale non-convex problems, we propose inexact variants of trust region and adaptive cubic regularization methods, which, to increase efficiency, incorporate various approximations. In particular, in addition to approximate sub-problem solves, both the Hessian and the gradient are suitably approximated. Using rather mild conditions on such approximations, we show that our proposed inexact methods achieve similar optimal worst-case iteration complexities as the exact counterparts. Our proposed algorithms, and their respective theoretical analysis, do not require knowledge of any unknowable problem-related quantities, and hence are easily implementable in practice. In the context of finite-sum problems, we then explore randomized sub-sampling methods as ways to construct the gradient and Hessian approximations and examine the empirical performance of our algorithms on some real datasets.

Download