Do you want to publish a course? Click here

String Model with Mesons and Baryons in Modified Measure Theory

56   0   0.0 ( 0 )
 Added by Tatiana Vulfs
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We consider string meson and string baryon models in the framework of the modified measure theory, the theory that does not use the determinant of the metric to construct the invariant volume element. As the outcome of this theory, the string tension is not placed ad hoc but is derived. When the charges are presented, the tension undergoes alterations. In the string meson model there are one string and two opposite charges at the endpoints. In the string baryon model there are two strings, two pairs of opposite charges at the endpoints and one additional charge at the intersection point, the point where these two strings are connected. The application of the modified measure theory is justified because the Neumann boundary conditions are obtained dynamically at every point where the charge is located and Dirichlet boundary conditions arise naturally at the intersection point. In particular, the Neumann boundary conditions that are obtained at the intersection point differ from that considered before by t Hooft in [hep-th/0408148] and are stronger, which appears to solve the nonlocality problem that was encountered in the standard measure approach. The solutions of the equations of motion are presented. Assuming that each endpoint is the dynamical massless particle, the Regge trajectory with the slope parameter that depends on three different tensions is obtained.



rate research

Read More

We show that it is possible to formulate string theory as a Galileon string theory. The galileon field $chi$ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of Polyakov. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time the theory satisfies all requirements of the galileon higher derivative theory at the action level while the equations of motion are still of the second order. A galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also we define the galileon gauge transformations. Generalizations to branes with other modified measures are discussed.
161 - E. Oset , A. Ramos , E. J. Garzon 2012
After some short introductory remarks on particular issues on the vector mesons in nuclei, in this paper we present a short review of recent developments concerning the interaction of vector mesons with baryons and with nuclei from a modern perspective using the local hidden gauge formalism for the interaction of vector mesons. We present results for the vector baryon interaction and in particular for the resonances which appear as composite states, dynamically generated from the interaction of vector mesons with baryons, taking also the mixing of these states with pseudoscalars and baryons into account. We then venture into the charm sector, reporting on hidden charm baryon states around 4400 MeV, generated from the interaction of vector mesons and baryons with charm, which have a strong repercussion on the properties of the $J/Psi N$ interaction. We also address the interaction of $K^*$ with nuclei and make suggestions to measure the predicted huge width in the medium by means of the transparency ratio. The formalism is extended to study the phenomenon of $J/psi$ suppression in nuclei via $J/psi$ photoproduction reactions.
With a view to exploring a new kind of phase transition in the process of hadronization of quark-gluon plasma (QGP) we investigate the occurrence of pentaquark baryons and tetraquark mesons in the system. For this purpose, the frame work of an analoguous Sahas ionization formula for the colored ions in the system is used. The study of color-ionic-fraction (CIF) of multiply (color) ionized to unionized quark clusters (termed as quarkons) as a function of temperature is carried out. It is pointed out that not only the temperature of the fire-ball in the relativistic heavy ion collisions evolves with respect to space and time but also the CIF associated with a particular stage of ionization. Further, for the case of single color-ionization a correspondence of the present results with those available for the bubble nucleation mechanism in QGP is demonstrated.
The fundamental string length, which is an essential part of string theory, explicitly breaks scale invariance. However, in field theory we demonstrated recently that the gravitational constant, which is directly related to the string length, can be promoted to a dynamical field if the standard model coupled to gravity (SM+GR) is lifted to a locally scale (Weyl) invariant theory. The higher gauge symmetry reveals previously unknown field patches whose inclusion turn the classically conformally invariant SM+GR into a geodesically complete theory with new cosmological and possibly further physical consequences. In this paper this concept is extended to string theory by showing how it can be Weyl lifted with a local scale symmetry acting on target space background fields. In this process the string tension (fundamental string length) is promoted to a dynamical field, in agreement with the parallel developments in field theory. We then propose a string theory in a geodesically complete cosmological stringy background which suggests previously unimagined directions in the stringy exploration of the very early universe.
95 - Oleg Andreev 2020
The string breaking phenomenon in QCD can be studied using the gauge/string duality. In this approach, one can make estimates of some of the string breaking distances at non-zero temperature and baryon chemical potential. These point towards the enhancement of baryon production in strong decays of heavy mesons in dense baryonic medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا