No Arabic abstract
We present our ALMA Cycle 4 measurements of the [CII] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity ($M_{rm 1450} > -25$) quasars at $z gtrsim 6$ discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [CII] line and FIR continuum luminosities lie in the ranges $L_{rm [CII]} = (3.8-10.2) times 10^8~L_odot$ and $L_{rm FIR} = (1.2-2.0) times 10^{11}~L_odot$, which are at least one order of magnitude smaller than those of optically-luminous quasars at $z gtrsim 6$. We estimate the star formation rates (SFR) of our targets as $simeq 23-40~M_odot ~{rm yr}^{-1}$. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The $L_{rm [CII]}/L_{rm FIR}$ ratios of the hosts, $simeq (2.2-8.7) times 10^{-3}$, are fully consistent with local star-forming galaxies. Using the [CII] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as $simeq (1.4-8.2) times 10^{10}~M_odot$. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at $z sim 6$, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of the most of low-luminosity quasars including the HSC ones are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole-host galaxy evolution.
We present new measurements of the quasar luminosity function (LF) at $z sim 6$, over an unprecedentedly wide range of the rest-frame ultraviolet luminosity $M_{1450}$ from $-30$ to $-22$ mag. This is the fifth in a series of publications from the Subaru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The LF was calculated with a complete sample of 110 quasars at $5.7 le z le 6.5$, which includes 48 SHELLQs quasars discovered over 650 deg$^2$, and 63 brighter quasars discovered by the Sloan Digital Sky Survey and the Canada-France-Hawaii Quasar Survey (including one overlapping object). This is the largest sample of $z sim 6$ quasars with a well-defined selection function constructed to date, and has allowed us to detect significant flattening of the LF at its faint end. A double power-law function fit to the sample yields a faint-end slope $alpha = -1.23^{+0.44}_{-0.34}$, a bright-end slope $beta = -2.73^{+0.23}_{-0.31}$, a break magnitude $M_{1450}^* = -24.90^{+0.75}_{-0.90}$, and a characteristic space density $Phi^* = 10.9^{+10.0}_{-6.8}$ Gpc$^{-3}$ mag$^{-1}$. Integrating this best-fit model over the range $-18 < M_{1450} < -30$ mag, quasars emit ionizing photons at the rate of $dot{n}_{rm ion} = 10^{48.8 pm 0.1}$ s$^{-1}$ Mpc$^{-3}$ at $z = 6.0$. This is less than 10 % of the critical rate necessary to keep the intergalactic medium ionized, which indicates that quasars are not a major contributor to cosmic reionization.
We present measurements of the size of the quasar proximity zone ($R_p$) for eleven low-luminosity ($-26.16leq M_{1450}leq-22.83$) quasars at $zsim6$, discovered by the Subaru High-$z$ Exploration of Low-Luminosity Quasars project (SHELLQs). Our faint quasar sample expands the $R_p$ measurement down to $M_{1450}=-22.83$ mag, where more common quasar populations dominate at the epoch. We restrict the sample to quasars whose systemic redshifts have been precisely measured by [CII] 158 $mu$m or MgII $lambda$2798 emission lines. We also update the $R_p$ measurements for 26 luminous quasars presented in Eilers et al. (2017)(arXiv:1703.02539) by using the latest systemic redshift results. The luminosity dependence on $R_p$ is found to be consistent with the theoretical prediction assuming highly ionized intergalactic medium. We find a shallow redshift evolution of the luminosity-corrected $R_p$, $R_{p,{rm corr}}^{-25}$ ($R_{p, rm corr}^{-25}propto(1+z)^{-3.79pm1.72}$) over $5.8lesssim z lesssim6.6$. This trend is steeper than that of Eilers et al. (2017) but significantly shallower than those of the earlier studies. Our results suggest that $R_{p,rm corr}$ is insensitive to the neutral fraction of the universe at $zsim6$. Four quasars show exceptionally small $R_{p,rm corr}^{-25}$ ($ lesssim0.90$ proper Mpc), which could be the result of their young age ($<10^4$ yr) in the reionization epoch, though statistics is still small.
We report discovery of 41 new high-z quasars and luminous galaxies, which were spectroscopically identified at 5.7 < z < 6.9. This is the fourth in a series of papers from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, based on the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. We selected the photometric candidates by a Bayesian probabilistic algorithm, and then carried out follow-up spectroscopy with the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous papers, we have now spectroscopically identified 137 extremely-red HSC sources over about 650 deg2, which include 64 high-z quasars, 24 high-z luminous galaxies, 6 [O III] emitters at z ~ 0.8, and 43 Galactic cool dwarfs (low-mass stars and brown dwarfs). The new quasars span the luminosity range from M1450 ~ -26 to -22 mag, and continue to populate a few magnitude lower luminosities than have been probed by previous wide-field surveys. In a companion paper, we derive the quasar luminosity function at z ~ 6 over an unprecedentedly wide range of M1450 ~ -28 to -21 mag, exploiting the SHELLQs and other survey outcomes.
We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 < z < 6.8. This is the second in a series of papers presenting the results of the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The photometric candidates were selected by a Bayesian probabilistic algorithm, and then observed with spectrographs on the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous paper, we have now identified 64 HSC sources over about 430 deg2, which include 33 high-z quasars, 14 high-z luminous galaxies, 2 [O III] emitters at z ~ 0.8, and 15 Galactic brown dwarfs. The new quasars have considerably lower luminosity (M1450 ~ -25 to -22 mag) than most of the previously known high-z quasars. Several of these quasars have luminous (> 10^(43) erg/s) and narrow (< 500 km/s) Ly alpha lines, and also a possible mini broad absorption line system of N V 1240 in the composite spectrum, which clearly separate them from typical quasars. On the other hand, the high-z galaxies have extremely high luminosity (M1450 ~ -24 to -22 mag) compared to other galaxies found at similar redshift. With the discovery of these new classes of objects, we are opening up new parameter spaces in the high-z Universe. Further survey observations and follow-up studies of the identified objects, including the construction of the quasar luminosity function at z ~ 6, are ongoing.
We present deep Keck/MOSFIRE near-infrared spectroscopy of a strong Lyman alpha emitting source at z=6.1292, HSC J142331.71-001809.1, which was discovered by the SHELLQS program from imaging data of the Subaru Hyper Suprime-Cam (HSC) survey. This source is one of five objects that show unresolved (<230 km s-1) and prominent (>10^44 erg s-1) Lyman alpha emission lines at absolute 1450 angstrom continuum magnitudes of M1450~-22 mag. Its rest-frame Lyman alpha equivalent width (EW) is 370+/-30 angstrom. In the 2 hour Keck/MOSFIRE spectrum in Y band, the high-ionization CIV 1548,1550 doublet emission line was clearly detected with FWHM =120+/-20 km s-1 and a total rest-frame EW of 37-5+6 angstrom. We also report the detection of weak continuum emission, and the tentative detection of OIII] 1661,1666 in the 4 hour J band spectrum. Judging from the UV magnitude, line widths, luminosities, and EWs of Lyman alpha and CIV, we suggest that this source is a reionization-era analog of classical type-II AGNs, although there is a possibility that it represents a new population of AGN/galaxy composite objects in the early universe. We compare the properties of J1423-0018 to intermediate-redshift type-II AGNs and CIV emitters seen in z=6-7 galaxy samples. Further observations of other metal emission lines in the rest-frame UV or optical, and X-ray follow-up observations of the z=6-7 narrow-line quasars are needed for more robust diagnostics and to determine their nature.