Do you want to publish a course? Click here

Direct sampling of the self-energy with Connected Determinant Monte Carlo

221   0   0.0 ( 0 )
 Added by Riccardo Rossi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this note, we present an efficient algorithm to sample directly the self-energy in the framework of the Connected Determinant technique. The introduction of the formalism of many-variable formal power series is essential to the proof, and more generally it is a natural mathematical tool for diagrammatic expansions.



rate research

Read More

We present a technique that enables the evaluation of perturbative expansions based on one-loop-renormalized vertices up to large expansion orders. Specifically, we show how to compute large-order corrections to the random phase approximation in either the particle-hole or particle-particle channels. The algorithms efficiency is achieved by the summation over contributions of all symmetrized Feynman diagram topologies using determinants, and by integrating out analytically the two-body long-range interactions in order to yield an effective zero-range interaction. Notably, the exponential scaling of the algorithm as a function of perturbation order leads to a polynomial scaling of the approximation error with computational time for a convergent series. To assess the performance of our approach, we apply it to the non-perturbative regime of the square-lattice fermionic Hubbard model away from half-filling and report, as compared to the bare interaction expansion algorithm, significant improvements of the Monte Carlo variance as well as the convergence properties of the resulting perturbative series.
151 - Riccardo Rossi 2016
We present a simple trick that allows to consider the sum of all connected Feynman diagrams at fixed position of interaction vertices for general fermionic models. With our approach one achieves superior performance compared to Diagrammatic Monte Carlo, while rendering the algorithmic part dramatically simpler. As we consider the sum of all connected diagrams at once, we allow for cancellations between diagrams with different signs, alleviating the sign problem. Moreover, the complexity of the calculation grows exponentially with the order of the expansion, which should be constrasted with the factorial growth of the standard diagrammatic technique. We illustrate the efficiency of the technique for the two-dimensional Fermi-Hubbard model.
122 - Y. F. Kung , C.-C. Chen , Yao Wang 2016
We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the ({pi},{pi}) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.
The Kondo and Periodic Anderson models describe many of the qualitative features of local moments coupled to a conduction band, and thereby the physics of materials such as the heavy fermions. In particular, when the exchange coupling $J$ or hybridization $V$ between the moments and the electrons of the metallic band is large, singlets form, quenching the magnetism. In the opposite, small $J$ or $V$, limit, the moments survive, and the conduction electrons mediate an effective interaction which can trigger long range, often antiferromagnetic, order. In the case of the Kondo model, where the moments are described by local spins, Nozi`eres considered the possibility that the available conduction electrons within the Kondo temperature of the Fermi surface would be insufficient in number to accomplish the screening. Much effort in the literature has been devoted to the study of the temperature scales in the resulting `exhaustion problem, and how the `coherence temperature where a heavy Fermi liquid forms is related to the Kondo temperature. In this paper, we study a version of the Periodic Anderson model in which some of the conduction electrons are removed in a way which avoids the fermion sign problem and hence allows low temperature Quantum Monte Carlo simulations which can access both singlet formation and magnetic ordering temperature scales. We are then able to focus on a somewhat different aspect of exhaustion physics than previously considered: the effect of dilution on the critical $V$ for the singlet-antiferromagnetic transition.
The superconducting (SC) and charge-density-wave (CDW) susceptibilities of the two dimensional Holstein model are computed using determinant quantum Monte Carlo (DQMC), and compared with results computed using the Migdal-Eliashberg (ME) approach. We access temperatures as low as 25 times less than the Fermi energy, $E_F$, which are still above the SC transition. We find that the SC susceptibility at low $T$ agrees quantitatively with the ME theory up to a dimensionless electron-phonon coupling $lambda_0 approx 0.4$ but deviates dramatically for larger $lambda_0$. We find that for large $lambda_0$ and small phonon frequency $omega_0 ll E_F$ CDW ordering is favored and the preferred CDW ordering vector is uncorrelated with any obvious feature of the Fermi surface.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا