No Arabic abstract
We present Chandra X-ray imaging of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like structure. X-rays are detected from 59% of 56 jets. No counterjets were detected. The core spectra are fitted by power law spectra with photon index $Gamma_x$ whose distribution is consistent with a normal distribution with mean 1.61{+0.04}{-0.05} and dispersion 0.15{+0.04}{-0.03}. We show that the distribution of $alpha_{rx}$, the spectral index between the X-ray and radio band jet fluxes, fits a Gaussian with mean 0.974 $pm$ 0.012 and dispersion 0.077 $pm$ 0.008. We test the model in which kpc-scale X-rays result from inverse Compton scattering of cosmic microwave background photons off the jets relativistic electrons (the IC-CMB model). In the IC-CMB model, a quantity Q computed from observed fluxes and the apparent size of the emission region depends on redshift as $(1+z)^{3+alpha}$. We fit $Q propto (1+z)^{a}$, finding $a = 0.88 pm 0.90$ and reject at 99.5% confidence the hypothesis that the average $alpha_{rx}$ depends on redshift in the manner expected in the IC-CMB model. This conclusion is mitigated by lack of detailed knowledge of the emission region geometry, which requires deeper or higher resolution X-ray observations. Furthermore, if the IC-CMB model is valid for X-ray emission from kpc-scale jets, then the jets must decelerate on average: bulk Lorentz factors should drop from about 15 to 2-3 between pc and kpc scales. Our results compound the problems that the IC-CMB model has in explaining the X-ray emission of kpc-scale jets.
We present results from continued Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. X-rays are detected from 24 of the 39 jets observed so far. We compute the distribution of alpha_rx, the spectral index between the X-ray and radio bands, showing that it is broad, extending at least from 0.8 to 1.2. While there is a general trend that the radio brightest jets are detected most often, it is clear that predicting the X-ray flux from the radio knot flux densities is risky so a shallow X-ray survey is the most effective means for finding jets that are X-ray bright. We test the model in which the X-rays result from inverse Compton (IC) scattering of cosmic microwave background (CMB) photons by relativistic electrons in the jet moving with high bulk Lorentz factor nearly along the line of sight. Depending on how the jet magnetic fields vary with z, the observed X-ray to radio flux ratios do not follow the redshift dependence expected from the IC-CMB model. For a subset of our sample with known superluminal motion based on VLBI observations, we estimate the angle of the kpc-scale jet to the line of sight by considering the additional information in the bends observed between pc- and kpc-scale jets. These angles are sometimes much smaller than estimates based on the IC-CMB model with a Lorentz factor of 15, indicating that these jets may decelerate significantly from pc scales to kpc scales.
We have completed a Chandra snapshot survey of 54 radio jets that are extended on arcsec scales. These are associated with flat spectrum radio quasars spanning a redshift range z=0.3 to 2.1. X-ray emission is detected from the jet of approximately 60% of the sample objects. We assume minimum energy and apply conditions consistent with the original Felten-Morrison calculations in order to estimate the Lorentz factors and the apparent Doppler factors. This allows estimates of the enthalpy fluxes, which turn out to be comparable to the radiative luminosities.
We have compiled a list of 36 O+O and 89 Wolf-Rayet binary candidates in the Milky Way and Magellanic clouds detected with the Chandra, XMM-Newton and ROSAT satellites to probe the connection between their X-ray properties and their system characteristics. Of the WR binaries with published parameters, all but two have kT > 0.9 keV. The most X-ray luminous WR binaries are typically very long period systems. The WR binaries show a nearly four-order of magnitude spread in X-ray luminosity, even among among systems with very similar WR primaries. Among the O+O binaries, short-period systems generally have soft X-ray spectra and longer period systems show harder X-ray spectra, again with a large spread in LX/Lbol.
We present results from Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. Twelve of twenty quasar jets are detected in 5 ks ACIS-S exposures. The quasars without X-ray jets are not significantly different from those in the sample with detected jets except that the extended radio emission is generally fainter. New radio maps are combined with the X-ray images in order to elucidate the relation between radio and X-ray emission in spatially resolved structures. We find a variety of morphologies, including long straight jets and bends up to 90 degrees. All X-ray jets are one-sided although the radio images used for source selection often show lobes opposite the X-ray jets. The FR II X-ray jets can all be interpreted as inverse Compton scattering of cosmic microwave background photons by electrons in large-scale relativistic jets although deeper observations are required to test this interpretation in detail. Applying this interpretation to the jets as a population, we find that the jets would be aligned to within 30 degrees of the line of sight generally, assuming that the bulk Lorentz factor of the jets is 10.
We report preliminary results from the first targets observed as part of a program to image the X-ray jets in a complete sample of radio selected jets. We have acquired Australian Telescope Compact Array and Very Large Array data with resolution 1, matching the Chandra resolution. PKS 1202-262 and PKS 0208-512 show dramatic coincidence with the initial radio jet, with the X-ray emission dropping off at the large angle radio bends, similar to the structure of PKS 0637-752.