No Arabic abstract
We studied the nearby, interacting galaxy NGC 5195 (M51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock-ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (~1-pc scale), from our new e-MERLIN observations (~10-pc scale), and from the Very Large Array (~100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically-thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Halpha and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ~3-6 x 10^{41} erg/s over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.
We present integral field spectroscopic observations of the central region of the active galaxy NGC 4258 obtained with the fibre IFU system INTEGRAL. We have been able to detect cold neutral gas by means of the interstellar NaD doublet absorption and to trace its distribution and kinematics with respect to the underlying disc. The neutral gas is blue-shifted with projected velocities in the 120--370 km/s range. We have also detected peculiar kinematics in part of the ionized gas in this region by means of a careful kinematic decomposition. The bipolar spatial distribution of the broader component is roughly coincident with the morphology of the X-ray diffuse emission. The kinematics of this gas can be explained in terms of expansion at very high (projected) velocities of up to 300 km/s. The observations also reveal the existence of a strip of neutral gas, parallel to the major kinematic axis, that is nearly coincident with a region of very high [SII]/H$alpha$ ratio tracing the shocked gas. Our observations are consistent with the jet model presented by cite{wilsonetal01} in which a cocoon originating from the nuclear jet is shocking the gas in the galaxy disc. Alternatively, our observations are also consistent with the bipolar hypershell model of cite{Sofue80} and cite{SofueandVogler01}. On balance, we prefer the latter model as the most likely explanation for the puzzling features of this peculiar object.
We present radio observations (1--40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t_2 = 1--263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with non-thermal emission observed at earlier times. We identify high brightness temperature emission (T_B > 5x10^4 K) as an indication of synchrotron emission in at least 9 (25%) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves as tables and encourage use of these data by the broader community in multi-wavelength studies and modeling efforts.
Moderately strong shocks arise naturally when two subclusters merge. For instance, when a smaller subcluster falls into the gravitational potential of a more massive cluster, a bow shock is formed and moves together with the subcluster. After pericenter passage, however, the subcluster is decelerated by the gravity of the main cluster, while the shock continues moving away from the cluster center. These shocks are considered as promising candidates for powering radio relics found in many clusters. The aim of this paper is to explore the fate of such shocks when they travel to the cluster outskirts, far from the place where the shocks were initiated. In a uniform medium, such a runaway shock should weaken with distance. However, as shocks move to large radii in galaxy clusters, the shock is moving down a steep density gradient that helps the shock to maintain its strength over a large distance. Observations and numerical simulations show that, beyond $R_{500}$, gas density profiles are as steep as, or steeper than, $sim r^{-3}$, suggesting that there exists a Habitable zone for moderately strong shocks in cluster outskirts where the shock strength can be maintained or even amplified. A characteristic feature of runaway shocks is that the strong compression, relative to the initial state, is confined to a narrow region just behind the shock. Therefore, if such a shock runs over a region with a pre-existing population of relativistic particles, then the boost in radio emissivity, due to pure adiabatic compression, will also be confined to a narrow radial shell.
Radio images of the Galactic Center supermassive black hole, Sagittarius A* (Sgr A*), are dominated by interstellar scattering. Previous studies of Sgr A* have adopted an anisotropic Gaussian model for both the intrinsic source and the scattering, and they have extrapolated the scattering using a purely $lambda^2$ scaling to estimate intrinsic properties. However, physically motivated source and scattering models break all three of these assumptions. They also predict that refractive scattering effects will be significant, which have been ignored in standard model fitting procedures. We analyze radio observations of Sgr A* using a physically motivated scattering model, and we develop a prescription to incorporate refractive scattering uncertainties when model fitting. We show that an anisotropic Gaussian scattering kernel is an excellent approximation for Sgr A* at wavelengths longer than 1cm, with an angular size of $(1.380 pm 0.013) lambda_{rm cm}^2,{rm mas}$ along the major axis, $(0.703 pm 0.013) lambda_{rm cm}^2,{rm mas}$ along the minor axis, and a position angle of $81.9^circ pm 0.2^circ$. We estimate that the turbulent dissipation scale is at least $600,{rm km}$, with tentative support for $r_{rm in} = 800 pm 200,{rm km}$, suggesting that the ion Larmor radius defines the dissipation scale. We find that the power-law index for density fluctuations in the scattering material is $beta < 3.47$, shallower than expected for a Kolmogorov spectrum ($beta=11/3$), and we estimate $beta = 3.38^{+0.08}_{-0.04}$ in the case of $r_{rm in} = 800,{rm km}$. We find that the intrinsic structure of Sgr A* is nearly isotropic over wavelengths from 1.3mm to 1.3cm, with a size that is roughly proportional to wavelength. We discuss implications for models of Sgr A*, for theories of interstellar turbulence, and for imaging Sgr A* with the Event Horizon Telescope.
We report on the first results of the POLAMI program, a simultaneous 3.5 and 1.3mm full-Stokes-polarisation monitoring of a sample of 36 of the brightest active galactic nuclei in the northern sky with the IRAM 30m Telescope. Through a systematic statistical study of data taken from October 2006 (from December 2009 for the case of the 1.3mm observations) to August 2014, we characterise the variability of the total flux density and linear polarisation. We find that all sources in the sample are highly variable in total flux density at both 3.5 and 1.3mm, as well as in spectral index, that is found to be optically thin in general. The total flux-density variability at 1.3mm is found, in general, to be faster, and to have larger amplitude and flatter PSD slopes than 3.5mm. The polarisation degree is on average larger at 1.3mm than at 3.5mm, by a factor of 2.6. The variability of linear polarisation degree is faster and has higher fractional amplitude than for total flux density, with the typical time scales during prominent polarisation peaks being significantly faster at 1.3mm than at 3.5mm. The polarisation angle at both 3.5 and 1.3mm is highly variable. Most of the sources show one or two excursions of >180 deg. on time scales from a few weeks to about a year during the course of our observations. The 3.5 and 1.3mm polarisation angle evolution follow rather well each other, although the 1.3mm data show a clear preference to more prominent variability on the short time scales, i.e. weeks. The data are compatible with multi-zone models of conical jets involving smaller emission regions for the shortest-wavelength emitting sites. Such smaller emitting regions should also be more efficient in energising particle populations. The data also favours the integrated emission at 1.3mm to have better ordered magnetic fields than the one at 3.5mm.