Co-evolution of supermassive black holes with galaxies from semi-analytic model: stochastic gravitational wave background and black hole clustering


Abstract in English

We study the co-evolution of supermassive black holes (SMBHs) with galaxies by means of semi-analytic model (SAM) of galaxy formation based on sub-halo merger trees built from Millennium and Millennium-II simulation. We utilize the simulation results from Guo 2013 and Henriques 2015 to study two aspects of the co-evolution, emph{i.e.} the stochastic gravitational wave (GW) background generated by SMBH merger and the SMBH/galaxy clustering. The characteristic strain amplitude of GW background predicted by Guo 2013 and Henriques 2015 models are $A_{yr^{-1}}=5.00times10^{-16}$ and $A_{yr^{-1}}=9.42times10^{-17}$, respectively. We find the GW amplitude is very sensitive to the galaxy merger rate. The difference in the galaxy merger rate between Guo 2013 and Henriques 2015, results in a factor $5$ deviation in the GW strain amplitude. For clusterings, we calculate the spatially isotropic two point auto- and cross-correlation functions (2PCFs) for both SMBHs and galaxies by using the mock catalogs generated from Guo 2013 model. We find that all 2PCFs have positive dependence on both SMBH and galaxy mass. And there exist a significant time evolution in 2PCFs, namely, the clustering effect is enhanced at lower redshifts. Interestingly, this result is not reported in the active galactic nuclei samples in SDSS. Our analysis also shows that, roughly, SMBHs and galaxies, with galaxy mass $10^2sim10^3$ larger than SMBH mass, have similar pattern of clustering, which is a reflection of the co-evolution of SMBH and galaxy. Finally, we calculate the first ten multiples of the angular power spectrum of the energy density of GW background. We find the amplitude of angular power spectrum of the first ten multiples is about $10%$ to $60%$ of the monopole component in the whole frequency range.

Download