$T_2$-limited sensing of static magnetic fields via fast rotation of quantum spins


Abstract in English

Diamond-based quantum magnetometers are more sensitive to oscillating (AC) magnetic fields than static (DC) fields because the crystal impurity-induced ensemble dephasing time $T_2^*$, the relevant sensing time for a DC field, is much shorter than the spin coherence time $T_2$, which determines the sensitivity to AC fields. Here we demonstrate measurement of DC magnetic fields using a physically rotating ensemble of nitrogen-vacancy centres at a precision ultimately limited by $T_2$ rather than $T_2^*$. The rotation period of the diamond is comparable to $T_2$ and the angle between the NV axis and the target magnetic field changes as a function of time, thus upconverting the static magnetic field to an oscillating field in the physically rotating frame. Using spin-echo interferometry of the rotating NV centres, we are able to perform measurements for over a hundred times longer compared to a conventional Ramsey experiment. With modifications our scheme could realise DC sensitivities equivalent to demonstrated NV center AC magnetic field sensitivities of order $0.1$,nT,Hz$^{-1/2}$.

Download