Do you want to publish a course? Click here

$T_2$-limited sensing of static magnetic fields via fast rotation of quantum spins

197   0   0.0 ( 0 )
 Added by Alexander Wood
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Diamond-based quantum magnetometers are more sensitive to oscillating (AC) magnetic fields than static (DC) fields because the crystal impurity-induced ensemble dephasing time $T_2^*$, the relevant sensing time for a DC field, is much shorter than the spin coherence time $T_2$, which determines the sensitivity to AC fields. Here we demonstrate measurement of DC magnetic fields using a physically rotating ensemble of nitrogen-vacancy centres at a precision ultimately limited by $T_2$ rather than $T_2^*$. The rotation period of the diamond is comparable to $T_2$ and the angle between the NV axis and the target magnetic field changes as a function of time, thus upconverting the static magnetic field to an oscillating field in the physically rotating frame. Using spin-echo interferometry of the rotating NV centres, we are able to perform measurements for over a hundred times longer compared to a conventional Ramsey experiment. With modifications our scheme could realise DC sensitivities equivalent to demonstrated NV center AC magnetic field sensitivities of order $0.1$,nT,Hz$^{-1/2}$.

rate research

Read More

Time-resolved magnetic sensing is of great importance from fundamental studies to applications in physical and biological sciences. Recently the nitrogen-vacancy (NV) defect center in diamond has been developed as a promising sensor of magnetic field under ambient conditions. However the methods to reconstruct time-resolved magnetic field with high sensitivity are not yet fully developed. Here, we propose and demonstrate a novel sensing method based on spin echo, and Haar wavelet transform. Our method is exponentially faster in reconstructing time-resolved magnetic field with comparable sensitivity over existing methods. Further, the wavelets unique features enable our method to extract information from the whole signal with only part of the measuring sequences. We then explore this feature for a fast detection of simulated nerve impulses. These results will be useful to time-resolved magnetic sensing with quantum probes at nano-scales.
The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magnetic field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic and electric field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging.
We present a protocol to achieve double quantum magnetometry at large static magnetic fields. This is a regime where sensitive sample parameters, such as the chemical shift, get enhanced facilitating their characterization. In particular, our method delivers two-tone stroboscopic radiation patterns with modulated Rabi frequencies to achieve larger spectral signals. Furthermore, it does not introduce inhomogeneous broadening in the sample spectrum preventing signal misinterpretation. Moreover, our protocol is designed to work under realistic conditions such as the presence of moderate microwave power and errors on the radiation fields. Albeit we particularise to nitrogen vacancy centers, our protocol is general, thus applicable to distinct quantum sensors.
Particle sensing in optical tweezers systems provides information on the position, velocity and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper we show that quadrant detection is non-optimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacy of both quadrant and spatial homodyne detection are shown. We demonstrate that an order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.
We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا