Do you want to publish a course? Click here

Shoulder Physiotherapy Exercise Recognition: Machine Learning the Inertial Signals from a Smartwatch

203   0   0.0 ( 0 )
 Added by David Burns
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Objective: Participation in a physical therapy program is considered one of the greatest predictors of successful conservative management of common shoulder disorders. However, adherence to these protocols is often poor and typically worse for unsupervised home exercise programs. Currently, there are limited tools available for objective measurement of adherence in the home setting. The goal of this study was to develop and evaluate the potential for performing home shoulder physiotherapy monitoring using a commercial smartwatch. Approach: Twenty healthy adult subjects with no prior shoulder disorders performed seven exercises from an evidence-based rotator cuff physiotherapy protocol, while 6-axis inertial sensor data was collected from the active extremity. Within an activity recognition chain (ARC) framework, four supervised learning algorithms were trained and optimized to classify the exercises: k-nearest neighbor (k-NN), random forest (RF), support vector machine classifier (SVC), and a convolutional recurrent neural network (CRNN). Algorithm performance was evaluated using 5-fold cross-validation stratified first temporally and then by subject. Main Results: Categorical classification accuracy was above 94% for all algorithms on the temporally stratified cross validation, with the best performance achieved by the CRNN algorithm (99.4%). The subject stratified cross validation, which evaluated classifier performance on unseen subjects, yielded lower accuracies scores again with CRNN performing best (88.9%). Significance: This proof of concept study demonstrates the technical feasibility of a smartwatch device and supervised machine learning approach to more easily monitor and assess the at-home adherence of shoulder physiotherapy exercise protocols.



rate research

Read More

This work explores the utility of implicit behavioral cues, namely, Electroencephalogram (EEG) signals and eye movements for gender recognition (GR) and emotion recognition (ER) from psychophysical behavior. Specifically, the examined cues are acquired via low-cost, off-the-shelf sensors. 28 users (14 male) recognized emotions from unoccluded (no mask) and partially occluded (eye or mouth masked) emotive faces; their EEG responses contained gender-specific differences, while their eye movements were characteristic of the perceived facial emotions. Experimental results reveal that (a) reliable GR and ER is achievable with EEG and eye features, (b) differential cognitive processing of negative emotions is observed for females and (c) eye gaze-based gender differences manifest under partial face occlusion, as typified by the eye and mouth mask conditions.
Human action recognition is used in many applications such as video surveillance, human computer interaction, assistive living, and gaming. Many papers have appeared in the literature showing that the fusion of vision and inertial sensing improves recognition accuracies compared to the situations when each sensing modality is used individually. This paper provides a survey of the papers in which vision and inertial sensing are used simultaneously within a fusion framework in order to perform human action recognition. The surveyed papers are categorized in terms of fusion approaches, features, classifiers, as well as multimodality datasets considered. Challenges as well as possible future directions are also stated for deploying the fusion of these two sensing modalities under realistic conditions.
This paper investigates the user experience of visualizations of a machine learning (ML) system that recognizes objects in images. This is important since even good systems can fail in unexpected ways as misclassifications on photo-sharing websites showed. In our study, we exposed users with a background in ML to three visualizations of three systems with different levels of accuracy. In interviews, we explored how the visualization helped users assess the accuracy of systems in use and how the visualization and the accuracy of the system affected trust and reliance. We found that participants do not only focus on accuracy when assessing ML systems. They also take the perceived plausibility and severity of misclassification into account and prefer seeing the probability of predictions. Semantically plausible errors are judged as less severe than errors that are implausible, which means that system accuracy could be communicated through the types of errors.
We examine the utility of implicit user behavioral signals captured using low-cost, off-the-shelf devices for anonymous gender and emotion recognition. A user study designed to examine male and female sensitivity to facial emotions confirms that females recognize (especially negative) emotions quicker and more accurately than men, mirroring prior findings. Implicit viewer responses in the form of EEG brain signals and eye movements are then examined for existence of (a) emotion and gender-specific patterns from event-related potentials (ERPs) and fixation distributions and (b) emotion and gender discriminability. Experiments reveal that (i) Gender and emotion-specific differences are observable from ERPs, (ii) multiple similarities exist between explicit responses gathered from users and their implicit behavioral signals, and (iii) Significantly above-chance ($approx$70%) gender recognition is achievable on comparing emotion-specific EEG responses-- gender differences are encoded best for anger and disgust. Also, fairly modest valence (positive vs negative emotion) recognition is achieved with EEG and eye-based features.
Hand Gesture Recognition (HGR) based on inertial data has grown considerably in recent years, with the state-of-the-art approaches utilizing a single handheld sensor and a vocabulary comprised of simple gestures. In this work we explore the benefits of using multiple inertial sensors. Using WaveGlove, a custom hardware prototype in the form of a glove with five inertial sensors, we acquire two datasets consisting of over $11000$ samples. To make them comparable with prior work, they are normalized along with $9$ other publicly available datasets, and subsequently used to evaluate a range of Machine Learning approaches for gesture recognition, including a newly proposed Transformer-based architecture. Our results show that even complex gestures involving different fingers can be recognized with high accuracy. An ablation study performed on the acquired datasets demonstrates the importance of multiple sensors, with an increase in performance when using up to three sensors and no significant improvements beyond that.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا