Do you want to publish a course? Click here

Electrofluorochromism at the single molecule level

118   0   0.0 ( 0 )
 Added by Guillaume Schull
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interplay between the oxidation state and the optical properties of molecules plays a key role for applications in displays, sensors or molecular-based memories. The fundamental mechanisms occurring at the level of a single-molecule have been difficult to probe. We used a scanning tunneling microscope (STM) to characterize and control the fluorescence of a single Zn-phthalocyanine radical cation adsorbed on a NaCl-covered Au(111) sample. The neutral and oxidized states of the molecule were identified on the basis of their fluorescence spectra that revealed very different emission energies and vibronic fingerprints. The emission of the charged molecule was controlled by tuning the thickness of the insulator and the plasmons localized at the apex of the STM tip. In addition, sub-nanometric variations of the tip position were used to investigate the charging and electroluminescence mechanisms.

rate research

Read More

Electronic transport properties for single-molecule junctions have been widely measured by several techniques, including mechanically controllable break junctions, electromigration break junctions or by means of scanning tunneling microscopes. In parallel, many theoretical tools have been developed and refined for describing such transport properties and for obtaining numerical predictions. Most prominent among these theoretical tools are those based upon density functional theory. In this review, theory and experiment are critically compared and this confrontation leads to several important conclusions. The theoretically predicted trends nowadays reproduce the experimental findings quite well for series of molecules with a single well-defined control parameter, such as the length of the molecules. The quantitative agreement between theory and experiment usually is less convincing, however. Many reasons for quantitative discrepancies can be identified, from which one may decide that qualitative agreement is the best one may expect with present modeling tools. For further progress, benchmark systems are required that are sufficiently well-defined by experiment to allow quantitative testing of the approximation schemes underlying the theoretical modeling. Several key experiments can be identified suggesting that the present description may even be qualitatively incomplete in some cases. Such key experimental observations and their current models are also discussed here, leading to several suggestions for extensions of the models towards including dynamic image charges, electron correlations, and polaron formation.
Strong coupling with single molecules in plasmonic picocavities has emerged as a resource for room-temperature quantum control with nanoscale light. Tip-based nanoprobes can measure the local dynamics of individual molecular picocavities, but the overhead associated with sampling an inhomogeneous picocavity distribution can be challenging for scalability. We propose a macroscopic approach in which an ensemble of molecular picocavities acts as a nonlinear plasmonic metamaterial. Using a quantum optics perspective, we study theoretical performance limits for optical cross-phase modulation in the system, taking into account realistic distributions of picocavity volumes and molecular transition frequencies. The medium nonlinearity is mediated by local strong coupling with the lowest vibronic emission sideband of individual organic chomophores. The local vacua change the refractive index of the medium at the frequency of a weak probe field $omega_p$, set to drive the bare zero-phonon absorption band. Refractive index variations $Delta n/n$ of a few percent, relative to a molecule-free scenario, are feasible with dilute ensembles. The probe phase evolution can be switched off in the presence of a signal field at a higher frequency $omega_s$, for intensities as low as 10 kW/cm$^2$. The mechanism for optical switching involves a novel ($omega_p+omega_s$) two-photon absorption channel, assisted by local vacuum fields. Our work paves the way for future studies of plasmonic metamaterials that exploit strong light-molecule interactions, for applications in optical state preparation and control.
Single-molecule junctions are found to show anomalous spikes in dI/dV spectra. The position in energy of the spikes are related to local vibration mode energies. A model of vibrationally induced two-level systems reproduces the data very well. This mechanism is expected to be quite general for single-molecule junctions. It acts as an intrinsic amplification mechanism for local vibration mode features and may be exploited as a new spectroscopic tool.
127 - Lei-Lei Nian , Jing-Tao Lu 2018
The coupling between molecular exciton and gap plasmons plays a key role in single molecular electroluminescence induced by a scanning tunneling microscope (STM). But it has been difficult to clarify the complex experimental phenomena. By employing the nonequilibrium Greens function method, we propose a general theoretical model to understand the light emission spectrum from single molecule and gap plasmons from an energy transport point of view. The coherent interaction between gap plasmons and molecular exciton leads to a prominent Fano resonance in the emission spectrum. We analyze the dependence of the Fano line shape on the system parameters, based on which we provide a unified account of several recent experimental observations. Moreover, we highlight the effect of the tip-molecule electronic coupling on the spectrum, which has hitherto not been considered.
178 - S. Bahr , K. Petukhov , V. Mosser 2007
We present pump-probe measurements on the single-molecule magnet Fe_8 with microwave pulses having a length of several nanoseconds. The microwave radiation in the experiments is located in the frequency range between 104 GHz and 118 GHz. The dynamics of the magnetization of the single Fe_8 crystal is measured using micrometer-sized Hall sensors. This technique allows us to determine the level lifetimes of excited spin states, that are found to be in good agreement with theoretical calculations. The theory, to which we compare our experimental results, is based on a general spin-phonon coupling formalism, which involves spin transitions between nearest and next-nearest energy levels. We show that good agreement between theory and experiments is only obtained when using both the Delta m_S = +-1 transition as well as Delta m_S = +-2, where Delta m_S designates a change in the spin quantum number m_S. Temperature dependent studies of the level lifetimes of several spin states allow us finally to determine experimentally the spin-phonon coupling constants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا