No Arabic abstract
We present a Galerkin-Collocation domain decomposition algorithm applied to the evolution of cylindrical unpolarized gravitational waves. We show the effectiveness of the algorithm in reproducing initial data with high localized gradients and in providing highly accurate dynamics. We characterize the gravitational radiation with the standard Newman-Penrose Weyl scalar $Psi_4$. We generate wave templates for both polarization modes, $times$ and $+$, outgoing and ingoing, to show how they exchange energy nonlinearly. In particular, considering an initially ingoing $times$ wave, we were able to trace a possible imprint of the gravitational analog of the Faraday effect in the generated templates.
We present a new computational framework for the Galerkin-collocation method for double domain in the context of ADM 3+1 approach in numerical relativity. This work enables us to perform high resolution calculations for initial sets of two arbitrary black holes. We use the Bowen-York method for binary systems and the puncture method to solve the Hamiltonian constraint. The nonlinear numerical code solves the set of equations for the spectral modes using the standard Newton-Raphson method, LU decomposition and Gaussian quadratures. We show convergence of our code for the conformal factor and the ADM mass. Thus, we display features of the conformal factor for different masses, spins and linear momenta.
General cylindrical waves are the simplest axisymmetrical gravitational waves that contain both $+$ and $times$ modes of polarization. In this paper, we have studied the evolution of general cylindrical gravitational waves in the realm of the characteristic scheme with a numerical code based on the Galerkin-Collocation method. The investigation consists of the numerical realization of concepts such as Bondi mass and the news functions adapted to cylindrical symmetry. The Bondi mass decays due to the presence of the news functions associated with both polarization modes. We have interpreted that each polarization mode as channels from which mass is extracted. Under this perspective, we have presented the enhancement effect of the polarization mode $+$ due to the nonlinear interaction with the mode $times$. After discussing the role of matter in cylindrical symmetry, we have extended the numerical code to include electromagnetic fields.
We present an implementation of the Galerkin-Collocation method to determine the initial data for non-rotating distorted three dimensional black holes in the inversion and puncture schemes. The numerical method combines the key features of the Galerkin and Collocation methods which produces accurate initial data. We evaluated the ADM mass of the initial data sets, and we have provided the angular structure of the gravitational wave distribution at the initial hypersurface by evaluating the scalar $Psi_4$ for asymptotic observers.
We present a single domain Galerkin-Collocation method to calculate puncture initial data sets for single and binary, either in the trumpet or wormhole geometries. The combination of aspects belonging to the Galerkin and the Collocation methods together with the adoption of spherical coordinates in all cases show to be very effective. We have proposed a unified expression for the conformal factor to describe trumpet and spinning black holes. In particular, for the spinning trumpet black holes, we have exhibited the deformation of the limit surface due to the spin from a sphere to an oblate spheroid. We have also revisited the energy content in the trumpet and wormhole puncture data sets. The algorithm can be extended to describe binary black holes.
Using the Sparling form and a geometric construction adapted to spacetimes with a 2-dimensional isometry group, we analyse a quasi-local measure of gravitational energy. We then study the gravitational radiation through spacetime junctions in cylindrically symmetric models of gravitational collapse to singularities. The models result from the matching of collapsing dust fluids interiors with gravitational wave exteriors, given by the Einstein-Rosen type solutions. For a given choice of a frame adapted to the symmetry of the matching hypersurface, we are able to compute the total gravitational energy radiated during the collapse and state whether the gravitational radiation is incoming or outgoing, in each case. This also enables us to distinguish whether a gravitational collapse is being enhanced by the gravitational radiation.