Do you want to publish a course? Click here

Discovery of three new millisecond pulsars in Terzan 5

69   0   0.0 ( 0 )
 Added by Mario Cadelano
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery of three new millisecond pulsars (namely J1748-2446aj, J1748-2446ak and J1748-2446al) in the inner regions of the dense stellar system Terzan 5. These pulsars have been discovered thanks to a method, alternative to the classical search routines, that exploited the large set of archival observations of Terzan 5 acquired with the Green Bank Telescope over 5 years (from 2010 to 2015). This technique allowed the analysis of stacked power spectra obtained by combining ~206 hours of observation. J1748-2446aj has a spin period of ~2.96 ms, J1748-2446ak of ~1.89 ms (thus it is the fourth fastest pulsar in the cluster) and J1748-2446al of ~5.95 ms. All the three millisecond pulsars are isolated and currently we have timing solutions only for J1748-2446aj and J1748-2446ak. For these two systems, we evaluated the contribution to the measured spin-down rate of the acceleration due to the cluster potential field, thus estimating the intrinsic spin-down rates, which are in agreement with those typically measured for millisecond pulsars in globular clusters. Our results increase to 37 the number of pulsars known in Terzan 5, which now hosts 25% of the entire pulsar population identified, so far, in globular clusters.



rate research

Read More

Transitional millisecond pulsars are accreting millisecond pulsars that switch between accreting X-ray binary and millisecond radio pulsar states. Only a handful of these objects have been identified so far. Terzan 5 CX1 is a variable hard X-ray source in the globular cluster Terzan 5. In this paper, we identify a radio counterpart to CX1 in deep Very Large Array radio continuum data. Chandra observations over the last fourteen years indicate that CX1 shows two brightness states: in 2003 and 2016 the source was the brightest X-ray source in the cluster (at L$_X sim 10^{33}$ erg s$^{-1}$), while in many intermediate observations, its luminosity was almost an order of magnitude lower. We analyze all available X-ray data of CX1, showing that the two states are consistent with the spectral and variability properties observed for the X-ray active and radio pulsar states of known transitional millisecond pulsars. Finally, we discuss the prospects for the detection of CX1 as a radio pulsar in existing timing data.
We report observed and derived timing parameters for three millisecond pulsars (MSPs) from observations collected with the Parkes 64-m telescope, Murriyang. The pulsars were found during re-processing of archival survey data by Mickaliger et al. One of the new pulsars (PSR J1546-5925) has a spin period $P=7.8$ ms and is isolated. The other two (PSR J0921-5202 with $P=9.7$ ms and PSR J1146-6610 with $P=3.7$ ms) are in binary systems around low-mass ($>0.2 M_{odot}$) companions. Their respective orbital periods are $38$.2 d and $62.8$ d. While PSR J0921-5202 has a low orbital eccentricity $e=1.3 times 10^{-5}$, in keeping with many other Galactic MSPs, PSR J1146-6610 has a significantly larger eccentricity, $e = 7.4 times 10^{-3}$. This makes it a likely member of a group of eccentric MSP-He white dwarf binary systems in the Galactic disk whose formation is poorly understood. Two of the pulsars are co-located with previously unidentified point sources discovered with the Fermi satellites Large Area Telescope, but no $gamma$-ray pulsations have been detected, likely due to their low spin-down powers. We also show that, particularly in terms of orbital diversity, the current sample of MSPs is far from complete and is subject to a number of selection biases.
We present the discovery of 5 millisecond pulsars found in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) Survey. The pulsars have rotational periods from ~2.3 to ~7.5 ms, and all are in binary systems with orbital periods ranging from ~0.3 to ~150 d. In four of these systems, the most likely companion is a white dwarf, with minimum masses of ~0.2 Solar Masses. The other pulsar, J1731-1847, has a very low mass companion and exhibits eclipses, and is thus a member of the black widow class of pulsar binaries. These eclipses have been observed in bands centred near frequencies of 700, 1400 and 3000 MHz, from which measurements have been made of the electron density in the eclipse region. These measurements have been used to examine some possible eclipse mechanisms. The eclipse and other properties of this source are used to perform a comparison with the other known eclipsing and black widow pulsars. These new discoveries occupy a short-period and high-dispersion measure (DM) region of parameter space, which we demonstrate is a direct consequence of the high time and frequency resolution of the HTRU survey. The large implied distances to our new discoveries makes observation of their companions unlikely with both current optical telescopes and the Fermi Gamma-ray Space Telescope. The extremely circular orbits make any advance of periastron measurements highly unlikely. No relativistic Shapiro delays are obvious in any of the systems, although the low flux densities would make their detection difficult unless the orbits were fortuitously edge-on.
We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<=2 kpc) millisecond pulsars. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power-law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of ~10^{30-31} erg/s are typical of the rare radio MSPs seen in X-rays.
We performed deep observations to search for radio pulsations in the directions of 375 unassociated Fermi Large Area Telescope (LAT) gamma-ray sources using the Giant Metrewave Radio Telescope (GMRT) at 322 and 607 MHz. In this paper we report the discovery of three millisecond pulsars (MSPs), PSR J0248+4230, PSR J1207$-$5050 and PSR J1536$-$4948. We conducted follow up timing observations for around 5 years with the GMRT and derived phase coherent timing models for these MSPs. PSR J0248$+$4230 and J1207$-$5050 are isolated MSPs having periodicities of 2.60 ms and 4.84 ms. PSR J1536-4948 is a 3.07 ms pulsar in a binary system with orbital period of around 62 days about a companion of minimum mass 0.32 solar mass. We also present multi-frequency pulse profiles of these MSPs from the GMRT observations. PSR J1536-4948 is an MSP with an extremely wide pulse profile having multiple components. Using the radio timing ephemeris we subsequently detected gamma-ray pulsations from these three MSPs, confirming them as the sources powering the gamma-ray emission. For PSR J1536-4948 we performed combined radio-gamma-ray timing using around 11.6 years of gamma-ray pulse times of arrivals (TOAs) along with the radio TOAs. PSR J1536-4948 also shows evidence for pulsed gamma-ray emission out to above 25 GeV, confirming earlier associations of this MSP with a >10 GeV point source. The multi-wavelength pulse profiles of all three MSPs offer challenges to models of radio and gamma-ray emission in pulsar magnetospheres.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا