Do you want to publish a course? Click here

Understanding the Low-Energy Enhancement of the $gamma$-ray Strength Function of $^{56}$Fe

75   0   0.0 ( 0 )
 Added by Michael Jones
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

A model-independent technique was used to determine the $gamma$-ray Strength Function ($gamma$SF) of $^{56}$Fe down to $gamma$-ray energies less than 1 MeV for the first time with GRETINA using the $(p,p)$ reaction at 16 MeV. No difference was observed in the energy dependence of the $gamma$SF built on $2^{+}$ and $4^{+}$ final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. The polarization results show a small bias towards magnetic character in the region of the enhancement.



rate research

Read More

The $gamma$-ray strength function of $^{56}$Fe has been measured from proton-$gamma$ coincidences for excitation energies up to $approx 11$ MeV. The low-energy enhancement in the $gamma$-ray strength function, which was first discovered in the ($^3$He,$alphagamma$)$^{56}$Fe reaction, is confirmed with the ($p,p^primegamma$)$^{56}$Fe experiment reported here. Angular distributions of the $gamma$ rays give for the first time evidence that the enhancement is dominated by dipole transitions.
The {gamma}-ray strength function and level density in the quasi-continuum of 151,153Sm have been measured using BGO shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow for an extraction of the {gamma} strength down to unprecedentedly low {gamma} energies of about 500 keV. For the first time an enhanced low- energy {gamma}-ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low {gamma} energies could have an impact of 2-3 orders of magnitude on the (n,{gamma}) reaction rates for the r-process nucleosynthesis.
In this work, we present new data on the $^{89}$Y($gamma$,n) cross section studied with a quasi-monochromatic photon beam produced at the NewSUBARU synchrotron radiation facility in Japan contributing torwards resolving a long standing discrepancy between existing measurements of this cross section. Results for $gamma$-ray strength function below threshold obtained by applying the Oslo method to $^{89}$Y($p,pgamma$)$^{89}$Y coincidences combined with the $^{89}$Y($gamma$,n) data this providing experimental data for the $gamma$-ray strength function of $^{89}$Y for $gamma$ energies in the range of $approx 1.6$ Mev to $approx$ 20 MeV. A low-energy enhancement is seen for $gamma$-rays below $approx 2.5$ MeV. Shell-model calculations indicate that this feature is caused by strong, low-energy $M1$ transitions at high excitation energies. The nuclear level density and $gamma$-ray strength function have been extracted from $^{89}$Y($d,p gamma$)$^{90}$Y coincidences using the Oslo method. Using the ($gamma,n$) and ($d,pgamma$) data as experimental constraints, we have calculated the $^{89}$Y($n,gamma$)$^{90}$Y cross section with the TALYS reaction code. Our results have been compared with directly measured (n,$gamma$) cross sections and evaluations. The $N=50$ isotope $^{89}$Y is an important bottleneck in the s-process and the magnitude of the $^{89}$Y(n,$gamma)$ cross section is key to understanding how s-process stars produce heavy isotopes.
Photoneutron cross sections were measured for $^{137}$Ba and $^{138}$Ba at energies below two-neutron threshold using quasi-monochromatic $gamma$-ray beams produced in laser Compton-scattering at the NewSUBARU synchrotron radiation facility. The photoneutron data are used to constrain the $gamma$-ray strength function on the basis of the Hartree-Fock-Bogolyubov plus quasi-particle random phase approximation using the Gogny D1M interaction. Supplementing the experimentally constrained $gamma$-ray strength function with the zero-limit E1 and M1 contributions which are unique to the deexcitation mode, we discuss radiative neutron capture cross sections relevant to the s-process nucleosynthesis of barium isotopes in the vicinity of the neutron magic number 82.
The nuclear level density and the gamma-ray strength function have been determined for 43Sc in the energy range up to 2 MeV below the neutron separation energy using the Oslo method with the 46Ti(p,alpha)43Sc reaction. A comparison to 45Sc shows that the level density of 43Sc is smaller by an approximately constant factor of two. This behaviour is well reproduced in a microscopical/combinatorial model calculation. The gamma-ray strength function is showing an increase at low gamma-ray energies, a feature which has been observed in several nuclei but which still awaits theoretical explanation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا