Do you want to publish a course? Click here

Geometric rectification for nanoscale vibrational energy harvesting

61   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we present a mechanism that, based on quantum-mechanical principles, allows one to recover kinetic energy at the nanoscale. Our premise is that very small mechanical excitations, such as those arising from sound waves propagating through a nanoscale system or similar phenomena, can be quite generally converted into useful electrical work by applying the same principles behind conventional adiabatic quantum pumping. The proposal is potentially useful for nanoscale vibrational energy harvesting where it can have several advantages. The most important one is that it avoids the use of classical rectification mechanisms as it is based on what we call geometric rectification. We show that this geometric rectification results from applying appropriate but quite general initial conditions to damped harmonic systems coupled to electronic reservoirs. We analyze an analytically solvable example consisting of a wire suspended over permanent charges where we find the condition for maximizing the pumped charge. We also studied the effects of coupling the system to a capacitor including the effect of current-induced forces and analyzing the steady-state voltage of operation. Finally, we show how quantum effects can be used to boost the performance of the proposed device.



rate research

Read More

Recent experiments with electrolytes driven through conical nanopores give evidence of strong rectified current response. In such devices, the asymmetry in the confinement is responsible of the non-Ohmic response, suggesting that the interplay of entropic and enthalpic forces plays a major role. Here we propose a theoretical model to shed light on the physical mechanism underlying ionic current rectification (ICR). By use of an effective description of the ionic dynamics we explore the systems response in different electrostatic regimes. We show that the rectification efficiency, as well as the channel selectivity, is driven by the surface-to-bulk conductivity ratio Dukhin length rather than the electrical double layer overlap.
97 - Ruishi Qi , Ning Li , Jinlong Du 2020
Direct measurement of local phonon dispersion in individual nanostructures can greatly advance our understanding of their electrical, thermal, and mechanical properties. However, such experimental measurements require extremely high detection sensitivity and combined spatial, energy and momentum resolutions, thus has been elusive. Here, we develop a four-dimensional electron energy loss spectroscopy (4D-EELS) technique based a monochromated scanning transmission electron microscope (STEM), and present the position-dependent phonon dispersion measurement in individual boron nitride nanotubes (BNNTs). Our measurement shows that the unfolded phonon dispersion of multi-walled BNNTs is close to hexagonal-boron nitride (h-BN) crystals, suggesting that interlayer coupling and curved geometry have no substantial impacts on phonon dispersion. We also find that the acoustic phonons are extremely sensitive to momentum-dependent defect scattering, while optical phonons are much less susceptible. This work not only provides useful insights into vibrational properties of BNNTs, but also demonstrates huge prospects of the developed 4D-EELS technique in nanoscale phonon dispersion measurements.
Motivated by recent experimental observation (see e.g., I.V.Rubtsov, Acc. Chem. Res., v. 42, 1385 (2009)) of vibrational energy transport in CH_2O_N and CF_2_N molecular chains (N = 4 - 12), in this paper we present and solve analytically a simple one dimensional model to describe theoretically these data. To mimic multiple conformations of the molecular chains, our model includes random off-diagonal couplings between neighboring sites. For the sake of simplicity we assume Gaussian distribution with dispersion sigma for these coupling matrix elements. Within the model we find that initially locally excited vibrational state can propagate along the chain. However the propagation is neither ballistic nor diffusion like. The time T_m for the first passage of the excitation along the chain, scales linearly with N in the agreement with the experimental data. Distribution of the excitation energies over the chain fragments (sites in the model) remains random, and the vibrational energy, transported to the chain end at $t=T_m$ is dramatically decreased when sigma is larger than characteristic interlevel spacing in the chain vibrational spectrum. We do believe that the problem we have solved is not only of intellectual interest (or to rationalize mentioned above experimental data) but also of relevance to design optimal molecular wires providing fast energy transport in various chemical and biological reactions.
The discovery of magnetic skyrmion bubbles in centrosymmetric magnets has been receiving increasing interest from the research community, due to the fascinating physics of topological spin textures and its possible applications to spintronics. However, key challenges remain, such as how to manipulate the nucleation of skyrmion bubbles to exclude the trivial bubbles or metastable skyrmion bubbles that usually coexist with skyrmion bubbles in the centrosymmetric magnets. Here, we report having successfully performed this task by applying spatially geometric confinement to a centrosymmetric frustrated Fe3Sn2 magnet. We demonstrate that the spatially geometric confinement can indeed stabilize the skyrmion bubbles, by effectively suppressing the formation of trivial bubbles and metastable skyrmion bubbles. We also show that the critical magnetic field for the nucleation of the skyrmion bubbles in the confined Fe3Sn2 nanostripes is drastically less, by an order of magnitude, than that what is required in the thin plate without geometrical confinement. By analyzing how the width and thickness of the nanostripes affect the spin textures of skyrmion bubbles, we infer that the topological transition of skyrmion bubbles is closely related to the dipole-dipole interaction, which we find is consistent with theoretical simulations. The results presented here represent an important step forward in manipulating the topological spin textures of skyrmion bubbles, making us closer to achieving the fabrication of skyrmion-based racetrack memory devices.
The relationship of the gas bubble size to the size distribution critically influences the effectiveness of electrochemical processes. Several optical and acoustical techniques have been used to characterize the size and emission frequency of bubbles. Here, we used zero-dimensional (0D) ion-sensitive field-effect transistors (ISFETs) buried under a microbath to detect the emission of individual bubbles electrically and to generate statistics on the bubble emission time. The bubble size was evaluated via a simple model of the electrolytic current. We suggest that energy lost during water electrolysis could be used to generate electric pulses at an optimal efficiency with an array of 0D ISFETs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا