Do you want to publish a course? Click here

Methodological variations in lagged regression for detecting physiologic drug effects in EHR data

126   0   0.0 ( 0 )
 Added by Matthew Levine
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We studied how lagged linear regression can be used to detect the physiologic effects of drugs from data in the electronic health record (EHR). We systematically examined the effect of methodological variations ((i) time series construction, (ii) temporal parameterization, (iii) intra-subject normalization, (iv) differencing (lagged rates of change achieved by taking differences between consecutive measurements), (v) explanatory variables, and (vi) regression models) on performance of lagged linear methods in this context. We generated two gold standards (one knowledge-base derived, one expert-curated) for expected pairwise relationships between 7 drugs and 4 labs, and evaluated how the 64 unique combinations of methodological perturbations reproduce gold standards. Our 28 cohorts included patients in Columbia University Medical Center/NewYork-Presbyterian Hospital clinical database. The most accurate methods achieved AUROC of 0.794 for knowledge-base derived gold standard (95%CI [0.741, 0.847]) and 0.705 for expert-curated gold standard (95% CI [0.629, 0.781]). We observed a 0.633 mean AUROC (95%CI [0.610, 0.657], expert-curated gold standard) across all methods that re-parameterize time according to sequence and use either a joint autoregressive model with differencing or an independent lag model without differencing. The complement of this set of methods achieved a mean AUROC close to 0.5, indicating the importance of these choices. We conclude that time- series analysis of EHR data will likely rely on some of the beneficial pre-processing and modeling methodologies identified, and will certainly benefit from continued careful analysis of methodological perturbations. This study found that methodological variations, such as pre-processing and representations, significantly affect results, exposing the importance of evaluating these components when comparing machine-learning methods.



rate research

Read More

A new class of survival frailty models based on the Generalized Inverse-Gaussian (GIG) distributions is proposed. We show that the GIG frailty models are flexible and mathematically convenient like the popular gamma frailty model. Furthermore, our proposed class is robust and does not present some computational issues experienced by the gamma model. By assuming a piecewise-exponential baseline hazard function, which gives a semiparametric flavour for our frailty class, we propose an EM-algorithm for estimating the model parameters and provide an explicit expression for the information matrix. Simulated results are addressed to check the finite sample behavior of the EM-estimators and also to study the performance of the GIG models under misspecification. We apply our methodology to a TARGET (Therapeutically Applicable Research to Generate Effective Treatments) data about survival time of patients with neuroblastoma cancer and show some advantages of the GIG frailties over existing models in the literature.
The central aim in this paper is to address variable selection questions in nonlinear and nonparametric regression. Motivated by statistical genetics, where nonlinear interactions are of particular interest, we introduce a novel and interpretable way to summarize the relative importance of predictor variables. Methodologically, we develop the RelATive cEntrality (RATE) measure to prioritize candidate genetic variants that are not just marginally important, but whose associations also stem from significant covarying relationships with other variants in the data. We illustrate RATE through Bayesian Gaussian process regression, but the methodological innovations apply to other black box methods. It is known that nonlinear models often exhibit greater predictive accuracy than linear models, particularly for phenotypes generated by complex genetic architectures. With detailed simulations and two real data association mapping studies, we show that applying RATE enables an explanation for this improved performance.
The hematopoietic system has a highly regulated and complex structure in which cells are organized to successfully create and maintain new blood cells. Feedback regulation is crucial to tightly control this system, but the specific mechanisms by which control is exerted are not completely understood. In this work, we aim to uncover the underlying mechanisms in hematopoiesis by conducting perturbation experiments, where animal subjects are exposed to an external agent in order to observe the system response and evolution. Developing a proper experimental design for these studies is an extremely challenging task. To address this issue, we have developed a novel Bayesian framework for optimal design of perturbation experiments. We model the numbers of hematopoietic stem and progenitor cells in mice that are exposed to a low dose of radiation. We use a differential equations model that accounts for feedback and feedforward regulation. A significant obstacle is that the experimental data are not longitudinal, rather each data point corresponds to a different animal. This model is embedded in a hierarchical framework with latent variables that capture unobserved cellular population levels. We select the optimum design based on the amount of information gain, measured by the Kullback-Leibler divergence between the probability distributions before and after observing the data. We evaluate our approach using synthetic and experimental data. We show that a proper design can lead to better estimates of model parameters even with relatively few subjects. Additionally, we demonstrate that the model parameters show a wide range of sensitivities to design options. Our method should allow scientists to find the optimal design by focusing on their specific parameters of interest and provide insight to hematopoiesis. Our approach can be extended to more complex models where latent components are used.
Background: During the early stages of hospital admission, clinicians must use limited information to make diagnostic and treatment decisions as patient acuity evolves. However, it is common that the time series vital sign information from patients to be both sparse and irregularly collected, which poses a significant challenge for machine / deep learning techniques to analyze and facilitate the clinicians to improve the human health outcome. To deal with this problem, We propose a novel deep interpolation network to extract latent representations from sparse and irregularly sampled time-series vital signs measured within six hours of hospital admission. Methods: We created a single-center longitudinal dataset of electronic health record data for all (n=75,762) adult patient admissions to a tertiary care center lasting six hours or longer, using 55% of the dataset for training, 23% for validation, and 22% for testing. All raw time series within six hours of hospital admission were extracted for six vital signs (systolic blood pressure, diastolic blood pressure, heart rate, temperature, blood oxygen saturation, and respiratory rate). A deep interpolation network is proposed to learn from such irregular and sparse multivariate time series data to extract the fixed low-dimensional latent patterns. We use k-means clustering algorithm to clusters the patient admissions resulting into 7 clusters. Findings: Training, validation, and testing cohorts had similar age (55-57 years), sex (55% female), and admission vital signs. Seven distinct clusters were identified. M Interpretation: In a heterogeneous cohort of hospitalized patients, a deep interpolation network extracted representations from vital sign data measured within six hours of hospital admission. This approach may have important implications for clinical decision-support under time constraints and uncertainty.
Estimating causal effects for survival outcomes in the high-dimensional setting is an extremely important topic for many biomedical applications as well as areas of social sciences. We propose a new orthogonal score method for treatment effect estimation and inference that results in asymptotically valid confidence intervals assuming only good estimation properties of the hazard outcome model and the conditional probability of treatment. This guarantee allows us to provide valid inference for the conditional treatment effect under the high-dimensional additive hazards model under considerably more generality than existing approaches. In addition, we develop a new Hazards Difference (HDi), estimator. We showcase that our approach has double-robustness properties in high dimensions: with cross-fitting, the HDi estimate is consistent under a wide variety of treatment assignment models; the HDi estimate is also consistent when the hazards model is misspecified and instead the true data generating mechanism follows a partially linear additive hazards model. We further develop a novel sparsity doubly robust result, where either the outcome or the treatment model can be a fully dense high-dimensional model. We apply our methods to study the treatment effect of radical prostatectomy versus conservative management for prostate cancer patients using the SEER-Medicare Linked Data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا