Do you want to publish a course? Click here

Evidence for Declination Dependence of Ultrahigh Energy Cosmic Ray Spectrum in the Northern Hemisphere

85   0   0.0 ( 0 )
 Added by Dmitri Ivanov
 Publication date 2018
  fields Physics
and research's language is English
 Authors R.U. Abbasi




Ask ChatGPT about the research

The energy of the ultrahigh energy spectral cutoff was measured, integrating over the northern hemisphere sky, by the Telescope Array (TA) collaboration, to be $10^{19.78 pm 0.06}$ eV, in agreement with the High Resolution Flys Eye (HiRes) experiment, whereas the Pierre Auger experiment, integrating over the southern hemisphere sky, measured the cutoff to be at 10$^{19.62 pm 0.02}$ eV. An 11% energy scale difference between the TA and Auger does not account for this difference. However, in comparing the spectra of the Telescope Array and Pierre Auger experiments in the band of declination common to both experiments ($-15.7^{circ} < delta < 24.8^{circ}$) we have found agreement in the energy of the spectral cutoff. While the Auger result is essentially unchanged, the TA cutoff energy has changed to $10^{19.59 pm 0.06}$ eV. In this paper we argue that this is an astrophysical effect.



rate research

Read More

This paper reports on the observation of the sidereal large-scale anisotropy of cosmic rays using data collected by the ARGO-YBJ experiment over 5 years (2008$-$2012). This analysis extends previous work limited to the period from 2008 January to 2009 December,near the minimum of solar activity between cycles 23 and 24.With the new data sample the period of solar cycle 24 from near minimum to maximum is investigated. A new method is used to improve the energy reconstruction, allowing us to cover a much wider energy range, from 4 to 520 TeV. Below 100 TeV, the anisotropy is dominated by two wide regions, the so-called tail-in and loss-cone features. At higher energies, a dramatic change of the morphology is confirmed. The yearly time dependence of the anisotropy is investigated. Finally, no noticeable variation of cosmic-ray anisotropy with solar activity is observed for a median energy of 7 TeV.
The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not highly relativistic. We show that shocks in the backflows of radio galaxies can meet these requirements. We discuss a model in which giant-lobed radio galaxies such as Centaurus A and Fornax A act as slowly-leaking UHECR reservoirs, with the UHECRs being accelerated during a more powerful past episode. We also show that Centaurus A, Fornax A and other radio galaxies may explain the observed anisotropies in data from the Pierre Auger Observatory, before examining some of the difficulties in associating UHECR anisotropies with astrophysical sources.
We use a multimessenger approach to constrain realistic mixed composition models of ultrahigh energy cosmic ray sources using the latest cosmic ray, neutrino, and gamma-ray data. We build on the successful Unger-Farrar-Anchordoqui 2015 (UFA15) model which explains the shape of the spectrum and its complex composition evolution via photodisintegration of accelerated nuclei in the photon field surrounding the source. We explore the constraints which can currently be placed on the redshift evolution of sources and the temperature of the photon field surrounding the sources. We show that a good fit is obtained to all data either with a source which accelerates a narrow range of nuclear masses or a Milky Way-like mix of nuclear compositions, but in the latter case the nearest source should be 30-50 Mpc away from the Milky Way in order to fit observations from the Pierre Auger Observatory. We also ask whether the data allow for a subdominant purely protonic component at UHE in addition to the primary UFA15 mixed composition component. We find that such a two-component model can significantly improve the fit to cosmic ray data while being compatible with current multimessenger data.
This is a review of the most resent results from the investigation of the Ultrahigh Energy Cosmic Rays, particles of energy exceeding 10$^{18}$ eV. After a general introduction to the topic and a brief review of the lower energy cosmic rays and the detection methods, the two most recent experiments, the High Resolution Flys Eye (HiRes) and the Southern Auger Observatory are described. We then concentrate on the results from these two experiments on the cosmic ray energy spectrum, the chemical composition of these cosmic rays and on the searches for their sources. We conclude with a brief analysis of the controversies in these results and the projects in development and construction that can help solve the remaining problems with these particles.
The sources of ultrahigh-energy cosmic rays (UHECRs) have been difficult to catch. It was recently pointed out that while sources of UHECR protons exhibit anisotropy patterns that become denser and compressed with rising energy, nucleus-emitting-sources give rise to a cepa stratis (onion-like) structure with layers that become more distant from the source position with rising energy. The peculiar shape of the hot spots from nucleus-accelerators is steered by the competition between energy loss during propagation and deflection on the Galactic magnetic field (GMF). Here, we run a full-blown simulation study to accurately characterize the deflections of UHECR nuclei in the GMF. We show that while the cepa stratis structure provides a global description of anisotropy patterns produced by UHECR nuclei en route to Earth, the hot spots are elongated depending on their location in the sky due to the regular structure of the GMF. We demonstrate that with a high-statistics sample at the high-energy-end of the spectrum, like the one to be collected by NASAs POEMMA mission, the energy dependence of the hot-spot contours could become a useful observable to identify the nuclear composition of UHECRs. This new method to determine the nature of the particle species is complementary to those using observables of extensive air showers, and therefore is unaffected by the large systematic uncertainties of hadronic interaction models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا