No Arabic abstract
The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.
The coupling between molecular exciton and gap plasmons plays a key role in single molecular electroluminescence induced by a scanning tunneling microscope (STM). But it has been difficult to clarify the complex experimental phenomena. By employing the nonequilibrium Greens function method, we propose a general theoretical model to understand the light emission spectrum from single molecule and gap plasmons from an energy transport point of view. The coherent interaction between gap plasmons and molecular exciton leads to a prominent Fano resonance in the emission spectrum. We analyze the dependence of the Fano line shape on the system parameters, based on which we provide a unified account of several recent experimental observations. Moreover, we highlight the effect of the tip-molecule electronic coupling on the spectrum, which has hitherto not been considered.
Combining electron paramagnetic resonance (EPR) with scanning tunneling microscopy (STM) enables detailed insight into the interactions and magnetic properties of single atoms on surfaces. A requirement for EPR-STM is the efficient coupling of microwave excitations to the tunnel junction. Here, we achieve a coupling efficiency of the order of unity by using a radiofrequency antenna placed parallel to the STM tip, which we interpret using a simple capacitive-coupling model. We further demonstrate the possibility to perform EPR-STM routinely above 4 K using amplitude as well as frequency modulation of the radiofrequency excitation. We directly compare different acquisition modes on hydrogenated Ti atoms and highlight the advantages of frequency and magnetic field sweeps as well as amplitude and frequency modulation in order to maximize the EPR signal. The possibility to tune the microwave-excitation scheme and to perform EPR-STM at relatively high temperature and high power opens this technique to a broad range of experiments, ranging from pulsed EPR spectroscopy to coherent spin manipulation of single atom ensembles.
A theoretical description of scanning tunneling potentoimetry (STP) measurement is presented to address the increasing need for a basis to interpret experiments on macrscopic samples. Based on a heuristic understanding of STP provided to facilitate theoretical understanding, the total tunneling current related to the density matrix of the sample is derived within the general framework of quantum transport. The measured potentiometric voltage is determined implicitly as the voltage necessary to null the tunneling current. Explicit expressions of measured voltages are presented under certain assumptions, and limiting cases are discussed to connect to previous results. The need to go forward and formulate the theory in terms of a local density matrix is also discussed.
Recent advances in scanning probe techniques rely on the chemical functionalization of the probe-tip termination by a single molecule. The success of this approach opens the tantalizing prospect of introducing spin sensitivity through the functionalization by a magnetic molecule. Here, we use a nickelocene-terminated tip (Nc-tip), which offers the possibility of producing spin excitations on the tip apex of a scanning tunneling microscope (STM). We show that when the Nc-tip is a hundred pm away from point contact with a surface-supported object, magnetic effects may be probed through changes in the spin excitation spectrum of nickelocene. We use this detection scheme to simultaneously determine the exchange field and the spin polarization of the sample with atomic-scale resolution. Our findings demonstrate that the Nc-tip is a powerful probe for investigating surface magnetism with STM, from single magnetic atoms to surfaces.
Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunnelling microscopy using a Greens Function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. The spectral signatures of the Fourier transform of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of non-ideal graphene samples on dual-probe measurements.