Do you want to publish a course? Click here

Entrance laws for annihilating Brownian motions and the continuous-space voter model

59   0   0.0 ( 0 )
 Added by Marcel Ortgiese
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Consider a system of particles moving independently as Brownian motions until two of them meet, when the colliding pair annihilates instantly. The construction of such a system of annihilating Brownian motions (aBMs) is straightforward as long as we start with a finite number of particles, but is more involved for infinitely many particles. In particular, if we let the set of starting points become increasingly dense in the real line it is not obvious whether the resulting systems of aBMs converge and what the possible limit points (entrance laws) are. In this paper, we show that aBMs arise as the interface model of the continuous-space voter model. This link allows us to provide a full classification of entrance laws for aBMs. We also give some examples showing how different entrance laws can be obtained via finite approximations. Further, we discuss the relation of the continuous-space voter model to the stepping stone and other related models. Finally, we obtain an expression for the $n$-point densities of aBMs starting from an arbitrary entrance law.



rate research

Read More

104 - Liping Li , Shuwen Lou 2020
Roughly speaking, a space with varying dimension consists of at least two components with different dimensions. In this paper we will concentrate on the one, which can be treated as $mathbb{R}^3$ tying a half line not contained by $mathbb{R}^3$ at the origin. The aim is twofold. On one hand, we will introduce so-called distorted Brownian motions on this space with varying dimension (dBMVDs in abbreviation) and study their basic properties by means of Dirichlet forms. On the other hand, we will prove the joint continuity of the transition density functions of these dBMVDs and derive the short-time heat kernel estimates for them.
168 - Olivier Raimond 2010
We study a natural continuous time version of excited random walks, introduced by Norris, Rogers and Williams about twenty years ago. We obtain a necessary and sufficient condition for recurrence and for positive speed. This is analogous to results for excited (or cookie) random walks.
Given a continuous time Markov Chain ${q(x,y)}$ on a finite set $S$, the associated noisy voter model is the continuous time Markov chain on ${0,1}^S$, which evolves in the following way: (1) for each two sites $x$ and $y$ in $S$, the state at site $x$ changes to the value of the state at site $y$ at rate $q(x,y)$; (2) each site rerandomizes its state at rate 1. We show that if there is a uniform bound on the rates ${q(x,y)}$ and the corresponding stationary distributions are almost uniform, then the mixing time has a sharp cutoff at time $log|S|/2$ with a window of order 1. Lubetzky and Sly proved cutoff with a window of order 1 for the stochastic Ising model on toroids; we obtain the special case of their result for the cycle as a consequence of our result. Finally, we consider the model on a star and demonstrate the surprising phenomenon that the time it takes for the chain started at all ones to become close in total variation to the chain started at all zeros is of smaller order than the mixing time.
177 - Ran Huo , Rick Durrett 2018
Inspired by the spread of discontent as in the 2016 presidential election, we consider a voter model in which 0s are ordinary voters and 1s are zealots. Thinking of a social network, but desiring the simplicity of an infinite object that can have a nontrivial stationary distribution, space is represented by a tree. The dynamics are a variant of the biased voter: if $x$ has degree $d(x)$ then at rate $d(x)p_k$ the individual at $x$ consults $kge 1$ neighbors. If at least one neighbor is 1, they adopt state 1, otherwise they become 0. In addition at rate $p_0$ individuals with opinion 1 change to 0. As in the contact process on trees, we are interested in determining when the zealots survive and when they will survive locally.
We consider the voter model dynamics in random networks with an arbitrary distribution of the degree of the nodes. We find that for the usual node-update dynamics the average magnetization is not conserved, while an average magnetization weighted by the degree of the node is conserved. However, for a link-update dynamics the average magnetization is still conserved. For the particular case of a Barabasi-Albert scale-free network the voter model dynamics leads to a partially ordered metastable state with a finite size survival time. This characteristic time scales linearly with system size only when the updating rule respects the conservation law of the average magnetization. This scaling identifies a universal or generic property of the voter model dynamics associated with the conservation law of the magnetization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا