Do you want to publish a course? Click here

A search for new supernova remnant shells in the Galactic plane with H.E.S.S

85   0   0.0 ( 0 )
 Added by Gerd P\\\"uhlhofer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A search for new supernova remnants (SNRs) has been conducted using TeV gamma-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912+101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.



rate research

Read More

Supernova remnants (SNRs) are prime candidates for efficient particle acceleration up to the knee in the cosmic ray particle spectrum. In this work we present a new method for a systematic search for new TeV-emitting SNR shells in 2864 hours of H.E.S.S. phase I data used for the H.E.S.S. Galactic Plane Survey. This new method, which correctly identifies the known shell morphologies of the TeV SNRs covered by the survey, HESS J1731-347, RX 1713.7-3946, RCW 86, and Vela Junior, reveals also the existence of three new SNR candidates. All three candidates were extensively studied regarding their morphological, spectral, and multi-wavelength (MWL) properties. HESS J1534-571 was associated with the radio SNR candidate G323.7-1.0, and thus is classified as an SNR. HESS J1912+101 and HESS J1614-518, on the other hand, do not have radio or X-ray counterparts that would permit to identify them firmly as SNRs, and therefore they remain SNR candidates, discovered first at TeV energies as such. Further MWL follow up observations are needed to confirm that these newly discovered SNR candidates are indeed SNRs.
156 - Nukri Komin 2012
Supernova remnants (SNRs) are the prime candidates for the acceleration of the Galactic Cosmic Rays. Tracers for interactions of Cosmic Rays with ambient material are gamma rays at TeV energies, which can be observed with ground based Cherenkov telescopes like H.E.S.S. In the recent years H.E.S.S. has detected several SNRs and interactions of SNRs with molecular clouds. Here the current results of these observations are presented and possible leptonic and hadronic scenarios are discussed. It is shown that it is likely that SNRs are the sources of Galactic Cosmic Rays.
The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). $gamma$-ray observations of SNR/MC associations are a powerful tool to constrain the origin of Galactic cosmic-rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. The detection of a $gamma$-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes is reported together with a study of the source with 5 years of Fermi-LAT high energy $gamma$-ray (0.06 - 300 GeV) data. The smoothly-connected combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at $304pm20$ MeV and $8.4_{-2.5}^{+2.2}$ GeV, the latter being constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR/MC associations and are found to be indicative of $gamma$-ray emission produced through neutral-pion decay.
86 - S.-B. Zhang , S. Dai , G. Hobbs 2018
We have observed the remnant of supernova SN~1987A (SNR~1987A), located in the Large Magellanic Cloud (LMC), to search for periodic and/or transient radio emission with the Parkes 64,m-diameter radio telescope. We found no evidence of a radio pulsar in our periodicity search and derived 8$sigma$ upper bounds on the flux density of any such source of $31,mu$Jy at 1.4~GHz and $21,mu$Jy at 3~GHz. Four candidate transient events were detected with greater than $7sigma$ significance, with dispersion measures (DMs) in the range 150 to 840,cm$^{-3},$pc. For two of them, we found a second pulse at slightly lower significance. However, we cannot at present conclude that any of these are associated with a pulsar in SNR~1987A. As a check on the system, we also observed PSR~B0540$-$69, a young pulsar which also lies in the LMC. We found eight giant pulses at the DM of this pulsar. We discuss the implications of these results for models of the supernova remnant, neutron star formation and pulsar evolution.
We investigate six supernova remnant (SNR) candidates --- G51.21+0.11, G52.37-0.70, G53.07+0.49, G53.41+0.03, G53.84-0.75, and the possible shell around G54.1-0.3 --- in the Galactic Plane using newly acquired LOw-Frequency ARray (LOFAR) High-Band Antenna (HBA) observations, as well as archival Westerbork Synthesis Radio Telescope (WSRT) and Very Large Array Galactic Plane Survey (VGPS) mosaics. We find that G52.37-0.70, G53.84-0.75, and the possible shell around pulsar wind nebula G54.1+0.3 are unlikely to be SNRs, while G53.07+0.49 remains a candidate SNR. G51.21+0.11 has a spectral index of $alpha=-0.7pm0.21$, but lacks X-ray observations and as such requires further investigation to confirm its nature. We confirm one candidate, G53.41+0.03, as a new SNR because it has a shell-like morphology, a radio spectral index of $alpha=-0.6pm0.2$ and it has the X-ray spectral characteristics of a 1000-8000 year old SNR. The X-ray analysis was performed using archival XMM-Newton observations, which show that G53.41+0.03 has strong emission lines and is best characterized by a non-equilibrium ionization model, consistent with an SNR interpretation. Deep Arecibo radio telescope searches for a pulsar associated with G53.41+0.03 resulted in no detection, but place stringent upper limits on the flux density of such a source if it is beamed towards Earth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا