Do you want to publish a course? Click here

Using the Maximum Entropy Principle to Combine Simulations and Solution Experiments

81   0   0.0 ( 0 )
 Added by Andrea Cesari
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular dynamics (MD) simulations allow investigating the structural dynamics of biomolecular systems with unrivaled time and space resolution. However, in order to compensate for the inaccuracies of the utilized empirical force fields, it is becoming common to integrate MD simulations with experimental data obtained from ensemble measurements. We here review the approaches that can be used to combine MD and experiment under the guidance of the maximum entropy principle. We mostly focus on methods based on Lagrangian multipliers, either implemented as reweighting of existing simulations or through an on-the-fly optimization. We discuss how errors in the experimental data can be modeled and accounted for. Finally, we use simple model systems to illustrate the typical difficulties arising when applying these methods.



rate research

Read More

Recent computational efforts have shown that the current potential energy models used in molecular dynamics are not accurate enough to describe the conformational ensemble of RNA oligomers and suggest that molecular dynamics should be complemented with experimental data. We here propose a scheme based on the maximum entropy principle to combine simulations with bulk experiments. In the proposed scheme the noise arising from both the measurements and the forward models used to back calculate the experimental observables is explicitly taken into account. The method is tested on RNA nucleosides and is then used to construct chemically consistent corrections to the Amber RNA force field that allow a large set of experimental data on nucleosides and dinucleosides to be correctly reproduced. The transferability of these corrections is assessed against independent data on tetranucleotides and displays a previously unreported agreement with experiments. This procedure can be applied to enforce multiple experimental data on multiple systems in a self-consistent framework thus suggesting a new paradigm for force field refinement.
This chapter discusses how the PLUMED plugin for molecular dynamics can be used to analyze and bias molecular dynamics trajectories. The chapter begins by introducing the notion of a collective variable and by then explaining how the free energy can be computed as a function of one or more collective variables. A number of practical issues mostly around periodic boundary conditions that arise when these types of calculations are performed using PLUMED are then discussed. Later parts of the chapter discuss how PLUMED can be used to perform enhanced sampling simulations that introduce simulation biases or multiple replicas of the system and Monte Carlo exchanges between these replicas. This section is then followed by a discussion on how free-energy surfaces and associated error bars can be extracted from such simulations by using weighted histogram and block averaging techniques.
The next-to-next-to-leading order (NNLO) pQCD prediction for the $gammagamma^* to eta_c$ form factor was evaluated in 2015 using nonrelativistic QCD (NRQCD). A strong discrepancy between the NRQCD prediction and the BaBar measurements was observed. Until now there has been no solution for this puzzle. In this paper, we present a NNLO analysis by applying the Principle of Maximum Conformality (PMC) to set the renormalization scale. By carefully dealing with the light-by-light diagrams at the NNLO level, the resulting high precision PMC prediction agrees with the BaBar measurements within errors, and the conventional renormalization scale uncertainty is eliminated. The PMC is consistent with all of the requirements of the renormalization group, including scheme-independence. The application of the PMC thus provides a rigorous solution for the $gammagamma^* to eta_c$ form factor puzzle, emphasizing the importance of correct renormalization scale-setting. The results also support the applicability of NRQCD to hard exclusive processes involving charmonium.
The process of RNA base fraying (i.e. the transient opening of the termini of a helix) is involved in many aspects of RNA dynamics. We here use molecular dynamics simulations and Markov state models to characterize the kinetics of RNA fraying and its sequence and direction dependence. In particular, we first introduce a method for determining biomolecular dynamics employing core-set Markov state models constructed using an advanced clustering technique. The method is validated on previously reported simulations. We then use the method to analyze extensive trajectories for four different RNA model duplexes. Results obtained using D. E. Shaw research and AMBER force fields are compared and discussed in detail, and show a non-trivial interplay between the stability of intermediate states and the overall fraying kinetics.
Natural and social multivariate systems are commonly studied through sets of simultaneous and time-spaced measurements of the observables that drive their dynamics, i.e., through sets of time series. Typically, this is done via hypothesis testing: the statistical properties of the empirical time series are tested against those expected under a suitable null hypothesis. This is a very challenging task in complex interacting systems, where statistical stability is often poor due to lack of stationarity and ergodicity. Here, we describe an unsupervised, data-driven framework to perform hypothesis testing in such situations. This consists of a statistical mechanical approach - analogous to the configuration model for networked systems - for ensembles of time series designed to preserve, on average, some of the statistical properties observed on an empirical set of time series. We showcase its possible applications with a case study on financial portfolio selection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا