Time invariant $mathcal{PT}$-product and phase locking in $mathcal{PT}$-symmetric lattice models


Abstract in English

Over the past decade, non-Hermitian, $mathcal{PT}$-symmetric Hamiltonians have been investigated as candidates for both, a fundamental, unitary, quantum theory, and open systems with a non-unitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the $mathcal{PT}$ (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of $mathcal{PT}$-symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave function phases at adjacent sites occurs in the $mathcal{PT}$-symmetry broken region. Our results pave the way towards understanding the physically observable implications of time-invariants in the non-unitary dynamics produced by $mathcal{PT}$-symmetric Hamiltonians.

Download