No Arabic abstract
In bright photodissociation regions (PDRs) associated to massive star formation, the presence of dense clumps that are immersed in a less dense interclump medium is often proposed to explain the difficulty of models to account for the observed gas emission in high-excitation lines. We aim at presenting a comprehensive view of the modeling of the CO rotational ladder in PDRs, including the high-J lines that trace warm molecular gas at PDR interfaces. We observed the 12CO and 13CO ladders in two prototypical PDRs, the Orion Bar and NGC 7023 NW using the instruments onboard Herschel. We also considered line emission from key species in the gas cooling of PDRs (C+, O, H2) and other tracers of PDR edges such as OH and CH+. All the intensities are collected from Herschel observations, the literature and the Spitzer archive and are analyzed using the Meudon PDR code. A grid of models was run to explore the parameter space of only two parameters: thermal gas pressure and a global scaling factor that corrects for approximations in the assumed geometry. We conclude that the emission in the high-J CO lines, which were observed up to Jup=23 in the Orion Bar (Jup=19 in NGC7023), can only originate from small structures of typical thickness of a few 1e-3 pc and at high thermal pressures (Pth~1e8 K cm-3). Compiling data from the literature, we found that the gas thermal pressure increases with the intensity of the UV radiation field given by G0, following a trend in line with recent simulations of the photoevaporation of illuminated edges of molecular clouds. This relation can help rationalising the analysis of high-J CO emission in massive star formation and provides an observational constraint for models that study stellar feedback on molecular clouds.
Herschel-HIFI observations of high-J lines (up to J_u=10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars in NGC1333. The observations show several energetic components including shocked and quiescent gas. Radiative transfer models are used to quantify the C18O envelope abundance which require a jump in the abundance at an evaporation temperature, T_ev ~25 K, providing new direct evidence of a CO ice evaporation zone around protostars. The abundance in the outermost part of the envelope, X_0, is within the canonical value of 2x10^-4; however the inner abundance, X_in, is found around a factor of 3-5 lower than X_0.
Context; Our understanding of the star formation process has traditionally been confined to certain mass or luminosity boundaries because most studies focus only on low-, intermediate- or high-mass star-forming regions. As part of the Water In Star-forming regions with Herschel (WISH) key program, water and other important molecules, such as CO and OH, have been observed in 51 embedded young stellar objects (YSOs). The studied sample covers a range of luminosities from <1 to >10^5 L_sol. Aims; We analyse the CO line emission towards a large sample of protostars in terms of both line intensities and profiles. Methods; Herschel-HIFI spectra of the 12CO 10-9, 13CO 10-9 and C18O 5-4, 9-8 and 10-9 lines are analysed for a sample of 51 YSOs. In addition, JCMT spectra of 12CO 3-2 and C18O 3-2 extend this analysis to cooler gas components. Results; All observed CO and isotopologue spectra show a strong linear correlation between the logarithms of the line and bolometric luminosities across six orders of magnitude on both axes. This suggests that the high-J CO lines primarily trace the amount of dense gas associated with YSOs. This relation can be extended to larger (extragalactic) scales. The majority of the detected 12CO line profiles can be decomposed into a broad and a narrow Gaussian component, while the C18O spectra are mainly fitted with a single Gaussian. A broadening of the line profile is also observed from pre-stellar cores to embedded protostars, which is due mostly to non-thermal motions (turbulence/infall). The widths of the broad 12CO 3-2 and 10-9 velocity components correlate with those of the narrow C18O 9-8 profiles, suggesting that the entrained outflowing gas and envelope motions are related independent of the mass of the protostar. These results indicate that physical processes in protostellar envelopes have similar characteristics across the studied luminosity range.
Herschel-HIFI observations of high-J lines (up to J_u=10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally-resolved HIFI data are complemented by ground-based observations of lower-J CO and isotopologue lines. The 12CO 10-9 profiles are dominated by broad (FWHM 25-30 km s^-1) emission. Radiative transfer models are used to constrain the temperature of this shocked gas to 100-200 K. Several CO and 13CO line profiles also reveal a medium-broad component (FWHM 5-10 km s^-1), seen prominently in H2O lines. Column densities for both components are presented, providing a reference for determining abundances of other molecules in the same gas. The narrow C18O 9-8 lines probe the warmer part of the quiescent envelope. Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars.
The determination of the physical conditions in molecular clouds is a key step towards our understanding of their formation and evolution of associated star formation. We investigate the density, temperature, and column density of both dust and gas in the photodissociation regions (PDRs) located at the interface between the atomic and cold molecular gas of the NGC 7023 reflection nebula. We study how young stars affect the gas and dust in their environment. Our approach combining both dust and gas delivers strong constraints on the physical conditions of the PDRs. We find dense and warm molecular gas of high column density in the PDRs.
The gas temperature structure of protoplanetary disks is a key ingredient for interpreting various disk observations and for quantifying the subsequent evolution of these systems. The comparison of low- and mid-$J$ CO rotational lines is a powerful tool to assess the temperature gradient in the warm molecular layer of disks. Spectrally resolved high-$J$ ($J_{rm u} > 14$) CO lines probe intermediate distances and heights from the star that are not sampled by (sub-)millimeter CO spectroscopy. This paper presents new {it Herschel}/HIFI and archival PACS observations of $^{12}$CO, $^{13}$CO and cii emission in 4 Herbig AeBe (HD 100546, HD 97048, IRS 48, HD 163296) and 3 T Tauri (AS 205, S CrA, TW Hya) disks. In the case of the T Tauri systems AS 205 and S CrA, the CO emission has a single-peaked profile, likely due to a slow wind. For all other systems, the {it Herschel} CO spectra are consistent with pure disk emission and the spectrally-resolved lines (HIFI) and the CO rotational ladder (PACS) are analyzed simultaneously assuming power-law temperature and column density profiles, using the velocity profile to locate the emission in the disk. The temperature profile varies substantially from disk to disk. In particular, $T_{rm gas}$ in the disk surface layers can differ by up to an order of magnitude among the 4 Herbig AeBe systems with HD 100546 being the hottest and HD 163296 the coldest disk of the sample. Clear evidence of a warm disk layer where $T_{rm gas} > T_{rm dust}$ is found in all the Herbig Ae disks. The observed CO fluxes and line profiles are compared to predictions of physical-chemical models. The primary parameters affecting the disk temperature structure are the flaring angle, the gas-to-dust mass ratio the scale height and the dust settling.