No Arabic abstract
We study the ordering statistics of 4 random walkers on the line, obtaining a much improved estimate for the long-time decay exponent of the probability that a particle leads to time $t$; $P_{rm lead}(t)sim t^{-0.91287850}$, and that a particle lags to time $t$ (never assumes the lead); $P_{rm lag}(t)sim t^{-0.30763604}$. Exponents of several other ordering statistics for $N=4$ walkers are obtained to 8 digits accuracy as well. The subtle correlations between $n$ walkers that lag {em jointly}, out of a field of $N$, are discussed: For $N=3$ there are no correlations and $P_{rm lead}(t)sim P_{rm lag}(t)^2$. In contrast, our results rule out the possibility that $P_{rm lead}(t)sim P_{rm lag}(t)^3$ for $N=4$, though the correlations in this borderline case are tiny.
We consider random walkers that deform the medium as they move, enabling a faster motion in regions which have been recently visited. This induces an effective attraction between walkers mediated by the medium, which can be regarded as a space metric, giving rise to a statistical mechanics toy model either for gravity, motion through deformable matter or adaptable geometry. In the strong-deformability regime, we find that diffusion is initially described by the porous medium equation, thus yielding subdiffusive behavior of an initially localized cloud of particles. Indeed, while the average width of a single cloud will sustain a $sigmasim t^{1/2}$ growth, the combined width of the whole ensemble will grow like $sigmasim t^{1/3}$ in a certain time regime. This difference can be accounted for by the strong correlations between the particles, which we explore indirectly through the fluctuations of the center of mass of the cloud and the expected value of the experienced density, defined as the average density measured by the particles themselves.
Random walks on discrete lattices are fundamental models that form the basis for our understanding of transport and diffusion processes. For a single random walker on complex networks, many properties such as the mean first passage time and cover time are known. However, many recent applications such as search engines and recommender systems involve multiple random walkers on complex networks. In this work, based on numerical simulations, we show that the fraction of nodes of scale-free network not visited by $W$ random walkers in time $t$ has a stretched exponential form independent of the details of the network and number of walkers. This leads to a power-law relation between nodes not visited by $W$ walkers and by one walker within time $t$. The problem of finding the distinct nodes visited by $W$ walkers, effectively, can be reduced to that of a single walker. The robustness of the results is demonstrated by verifying them on four different real-world networks that approximately display scale-free structure.
We introduce a model of interacting Random Walk, whose hopping amplitude depends on the number of walkers/particles on the link. The mesoscopic counterpart of such a microscopic dynamics is a diffusing system whose diffusivity depends on the particle density. A non-equilibrium stationary flux can be induced by suitable boundary conditions, and we show indeed that it is mesoscopically described by a Fourier equation with a density dependent diffusivity. A simple mean-field description predicts a critical diffusivity if the hopping amplitude vanishes for a certain walker density. Actually, we evidence that, even if the density equals this pseudo-critical value, the system does not present any criticality but only a dynamical slowing down. This property is confirmed by the fact that, in spite of interaction, the particle distribution at equilibrium is simply described in terms of a product of Poissonians. For mesoscopic systems with a stationary flux, a very effect of interaction among particles consists in the amplification of fluctuations, which is especially relevant close to the pseudo-critical density. This agrees with analogous results obtained for Ising models, clarifying that larger fluctuations are induced by the dynamical slowing down and not by a genuine criticality. The consistency of this amplification effect with altered coloured noise in time series is also proved.
A novel model, devised to describe spontaneous chirality synchronization in complex liquids and liquid crystals, is proposed and studied. Segments of ribbon-like molecular columns with left- or right-handed 180degree twist lie on the bonds of a honeycomb lattice so that three ribbons meet in a vertex of the hexagonal honeycomb. The energy of each vertex is a minimum if the three ribbons have the same chirality, -E, and is +E otherwise, and the ground state is homochiral, i.e. all ribbons have the same hand. The energy levels for two vertices linked by a single ribbon are either -2E, 0 and +2 E in this vertex model. Monte Carlo simulations demonstrate that this model is identical to an Ising spin model on a Kagome lattice, for which the site energy structure is quite different. The equivalence of the ordering of the vertex and Ising spin models is also shown analytically. The energy difference between the disordered and ground states, 4J in the spin model, is related to the transition temperature for the Kagome lattice using the exact result, Tc=2.14J. The ordering energy difference for a single site is 50% higher for the vertex model. The thermodynamic energy for the vertex model is corrected by a factor of 1/3 due to double counting and this makes the specific heat of the vertex model also equal to that of the spin model as expected. Other similar models where there is an unusual relation between the site and thermodynamic energies are discussed briefly.
We study a model of bacterial dynamics where two interacting random walkers perform run-and-tumble motion on a one-dimensional lattice under mutual exclusion and find an exact expression for the probability distribution in the steady state. This stationary distribution has a rich structure comprising three components: a jammed component, where the particles are adjacent and block each other; an attractive component, where the probability distribution for the distance between particles decays exponentially; and an extended component in which the distance between particles is uniformly distributed. The attraction between the particles is sufficiently strong that even in the limit where continuous space is recovered for a finite system, the two walkers spend a finite fraction of time in a jammed configuration. Our results potentially provide a route to understanding the motility-induced phase separation characteristic of active matter from a microscopic perspective.