Do you want to publish a course? Click here

Moments in Time Dataset: one million videos for event understanding

248   0   0.0 ( 0 )
 Added by Mathew Monfort
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for actions occurring in 3 second videos poses many challenges: meaningful events do not include only people, but also objects, animals, and natural phenomena; visual and auditory events can be symmetrical in time (opening is closing in reverse), and either transient or sustained. We describe the annotation process of our dataset (each video is tagged with one action or activity label among 339 different classes), analyze its scale and diversity in comparison to other large-scale video datasets for action recognition, and report results of several baseline models addressing separately, and jointly, three modalities: spatial, temporal and auditory. The Moments in Time dataset, designed to have a large coverage and diversity of events in both visual and auditory modalities, can serve as a new challenge to develop models that scale to the level of complexity and abstract reasoning that a human processes on a daily basis.

rate research

Read More

Current perception models in autonomous driving have become notorious for greatly relying on a mass of annotated data to cover unseen cases and address the long-tail problem. On the other hand, learning from unlabeled large-scale collected data and incrementally self-training powerful recognition models have received increasing attention and may become the solutions of next-generation industry-level powerful and robust perception models in autonomous driving. However, the research community generally suffered from data inadequacy of those essential real-world scene data, which hampers the future exploration of fully/semi/self-supervised methods for 3D perception. In this paper, we introduce the ONCE (One millioN sCenEs) dataset for 3D object detection in the autonomous driving scenario. The ONCE dataset consists of 1 million LiDAR scenes and 7 million corresponding camera images. The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available (e.g. nuScenes and Waymo), and it is collected across a range of different areas, periods and weather conditions. To facilitate future research on exploiting unlabeled data for 3D detection, we additionally provide a benchmark in which we reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset. We conduct extensive analyses on those methods and provide valuable observations on their performance related to the scale of used data. Data, code, and more information are available at https://once-for-auto-driving.github.io/index.html.
Detecting customized moments and highlights from videos given natural language (NL) user queries is an important but under-studied topic. One of the challenges in pursuing this direction is the lack of annotated data. To address this issue, we present the Query-based Video Highlights (QVHighlights) dataset. It consists of over 10,000 YouTube videos, covering a wide range of topics, from everyday activities and travel in lifestyle vlog videos to social and political activities in news videos. Each video in the dataset is annotated with: (1) a human-written free-form NL query, (2) relevant moments in the video w.r.t. the query, and (3) five-point scale saliency scores for all query-relevant clips. This comprehensive annotation enables us to develop and evaluate systems that detect relevant moments as well as salient highlights for diverse, flexible user queries. We also present a strong baseline for this task, Moment-DETR, a transformer encoder-decoder model that views moment retrieval as a direct set prediction problem, taking extracted video and query representations as inputs and predicting moment coordinates and saliency scores end-to-end. While our model does not utilize any human prior, we show that it performs competitively when compared to well-engineered architectures. With weakly supervised pretraining using ASR captions, Moment-DETR substantially outperforms previous methods. Lastly, we present several ablations and visualizations of Moment-DETR. Data and code is publicly available at https://github.com/jayleicn/moment_detr
An event happening in the world is often made of different activities and actions that can unfold simultaneously or sequentially within a few seconds. However, most large-scale datasets built to train models for action recognition provide a single label per video clip. Consequently, models can be incorrectly penalized for classifying actions that exist in the videos but are not explicitly labeled and do not learn the full spectrum of information that would be mandatory to more completely comprehend different events and eventually learn causality between them. Towards this goal, we augmented the existing video dataset, Moments in Time (MiT), to include over two million action labels for over one million three second videos. This multi-label dataset introduces novel challenges on how to train and analyze models for multi-action detection. Here, we present baseline results for multi-action recognition using loss functions adapted for long tail multi-label learning and provide improved methods for visualizing and interpreting models trained for multi-label action detection.
Whole understanding of the surroundings is paramount to autonomous systems. Recent works have shown that deep neural networks can learn geometry (depth) and motion (optical flow) from a monocular video without any explicit supervision from ground truth annotations, particularly hard to source for these two tasks. In this paper, we take an additional step toward holistic scene understanding with monocular cameras by learning depth and motion alongside with semantics, with supervision for the latter provided by a pre-trained network distilling proxy ground truth images. We address the three tasks jointly by a) a novel training protocol based on knowledge distillation and self-supervision and b) a compact network architecture which enables efficient scene understanding on both power hungry GPUs and low-power embedded platforms. We thoroughly assess the performance of our framework and show that it yields state-of-the-art results for monocular depth estimation, optical flow and motion segmentation.
The largest source of sound events is web videos. Most videos lack sound event labels at segment level, however, a significant number of them do respond to text queries, from a match found using metadata by search engines. In this paper we explore the extent to which a search query can be used as the true label for detection of sound events in videos. We present a framework for large-scale sound event recognition on web videos. The framework crawls videos using search queries corresponding to 78 sound event labels drawn from three datasets. The datasets are used to train three classifiers, and we obtain a prediction on 3.7 million web video segments. We evaluated performance using the search query as true label and compare it with human labeling. Both types of ground truth exhibited close performance, to within 10%, and similar performance trend with increasing number of evaluated segments. Hence, our experiments show potential for using search query as a preliminary true label for sound event recognition in web videos.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا