Do you want to publish a course? Click here

The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: Anisotropic Baryon Acoustic Oscillations measurements in Fourier-space with optimal redshift weights

90   0   0.0 ( 0 )
 Added by Gong-Bo Zhao
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter $alpha(z_{rm eff})$ by 17%. We reconstruct the evolution history of the BAO distance indicators in the redshift range of $0.8<z<2.2$. This paper is part of a set that analyses the eBOSS DR14 quasar sample.



rate research

Read More

We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts $0.8 < z < 2.2$ and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.8$sigma$. We determine the spherically averaged BAO distance to $z = 1.52$ to 3.8 per cent precision: $D_V(z=1.52)=3843pm147 left(r_{rm d}/r_{rm d, fid}right) $Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat $Lambda$CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find $Omega_{Lambda} > 0$ at 6.6$sigma$ significance when testing a $Lambda$CDM model with free curvature.
The extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 14 sample includes 80,118 Luminous Red Galaxies. By combining these galaxies with the high-redshift tail of the BOSS galaxy sample, we form a sample of LRGs at an effective redshift $z=0.72$, covering an effective volume of 0.9~Gpc$^3$. We introduce new techniques to account for spurious fluctuations caused by targeting and by redshift failures which were validated on a set of mock catalogs. This analysis is sufficient to provide a $2.6$% measurement of spherically averaged BAO, $D_V(z=0.72) = 2353^{+63}_{-61} (r_d/r_{d,rm{fid}}) h^{-1}$Mpc, at 2.8$sigma$ of significance. Together with the recent quasar-based BAO measurement at $z=1.5$, and forthcoming Emission Line Galaxy-based measurements, this measurement demonstrates that eBOSS is fulfilling its remit of extending the range of redshifts covered by such measurements, laying the ground work for forthcoming surveys such as the Dark Energy Spectroscopic Survey and Euclid.
Baryon Acoustic Oscillations are considered to be a very robust standard ruler against various systematics. This premise has been tested against observational systematics, but not to the level required for the next generation of galaxy surveys such as the Dark Energy Spectroscopic Instrument (DESI) and Euclid. In this paper, we investigate the effect of observational systematics on the BAO measurement of the final sample of quasars from the extended Baryon Oscillation Spectroscopic Survey Data Release 16 in order to prepare and hone a similar analysis for upcoming surveys. We employ catalogues with various treatments of imaging systematic effects using linear and neural network-based nonlinear approaches and consider how the BAO measurement changes. We also test how the variations to the BAO fitting model respond to the observational systematics. As expected, we confirm that the BAO measurements obtained from the DR16 quasar sample are robust against imaging systematics well within the statistical error, while reporting slightly modified constraints that shift the line-of-sight BAO signal by less than 1.1% . We use realistic simulations with similar redshift and angular distributions as the DR16 sample to conduct statistical tests for validating the pipeline, quantifying the significance of differences, and estimating the expected bias on the BAO scale in future high-precision data sets. Although we find a marginal impact for the eBOSS QSO data, the work presented here is of vital importance for constraining the nature of dark energy with the BAO feature in the new era of big data cosmology with DESI and Euclid.
We develop a new method, which is based on the optimal redshift weighting scheme, to extract the maximal tomographic information of baryonic acoustic oscillations (BAO) and redshift space distortions (RSD) from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 14 quasar (DR14Q) survey. We validate our method using the EZ mocks, and apply our pipeline to the eBOSS DR14Q sample in the redshift range of $0.8<z<2.2$. We report a joint measurement of $fsigma_8$ and two-dimensional BAO parameters $D_{rm A}$ and $H$ at four effective redshifts of $z_{rm eff}=0.98, 1.23, 1.52$ and $1.94$, and provide the full data covariance matrix. Using our measurement combined with BOSS DR12, MGS and 6dFGS BAO measurements, we find that the existence of dark energy is supported by observations at a $7.4sigma$ significance level. Combining our measurement with BOSS DR12 and Planck observations, we constrain the gravitational growth index to be $gamma=0.580pm0.082$, which is fully consistent with the prediction of general relativity. This paper is part of a set that analyses the eBOSS DR14 quasar sample.
We analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes $1,198,006$ galaxies over the redshift range $0.2 < z < 0.75$. We divide this dataset into three (overlapping) redshift bins with the effective redshifts $zeff = 0.38$, $0.51$ and $0.61$. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as $sim 1000$ MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ separately. We obtain two independent $1.6%$ and $1.5%$ constraints on $D_A(z)$ and $2.9%$ and $2.3%$ constraints on $H(z)$ for the low ($zeff=0.38$) and high ($zeff=0.61$) redshift bin, respectively. We obtain two independent $1%$ and $0.9%$ constraints on the angular averaged distance $D_V(z)$, when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of $8sigma$ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within $Lambda$CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in~citet{Alam2016} to produce the final cosmological constraints from BOSS.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا