Do you want to publish a course? Click here

Mass-structure of weighted real trees

125   0   0.0 ( 0 )
 Added by Noah Forman
 Publication date 2018
  fields
and research's language is English
 Authors Noah Forman




Ask ChatGPT about the research

Rooted, weighted continuum random trees are used to describe limits of sequences of random discrete trees. Formally, they are random quadruples $(mathcal{T},d,r,p)$, where $(mathcal{T},d)$ is a tree-like metric space, $rinmathcal{T}$ is a distinguished root, and $p$ is a probability measure on this space. The underlying branching structure is carried implicitly in the metric $d$. We explore various ways of describing the interaction between branching structure and mass in $(mathcal{T},d,r,p)$ in a way that depends on $d$ only by way of this branching structure. We introduce a notion of mass-structure equivalence and show that two rooted, weighted $mathbb{R}$-trees are equivalent in this sense if and only if the discrete hierarchies derived by i.i.d. sampling from their weights, in a manner analogous to Kingmans paintbox, have the same distribution. We introduce a family of trees, called interval partition trees that serve as representatives of mass-structure equivalence classes, and which naturally represent the laws of the aforementioned hierarchies.



rate research

Read More

We consider fixed-point equations for probability measures charging measured compact metric spaces that naturally yield continuum random trees. On the one hand, we study the existence/uniqueness of the fixed-points and the convergence of the corresponding iterative schemes. On the other hand, we study the geometric properties of the random measured real trees that are fixed-points, in particular their fractal properties. We obtain bounds on the Minkowski and Hausdorff dimension, that are proved tight in a number of applications, including the very classical continuum random tree, but also for the dual trees of random recursive triangulations of the disk introduced by Curien and Le Gall [Ann Probab, vol. 39, 2011]. The method happens to be especially efficient to treat cases for which the mass measure on the real tree induced by natural encodings only provides weak estimates on the Hausdorff dimension.
Weighted Szeged index is a recently introduced extension of the well-known Szeged index. In this paper, we present a new tool to analyze and characterize minimum weighted Szeged index trees. We exhibit the best trees with up to 81 vertices and use this information, together with our results, to propose various conjectures on the structure of minimum weighted Szeged index trees.
We investigate the effective resistance $R_n$ and conductance $C_n$ between the root and leaves of a binary tree of height $n$. In this electrical network, the resistance of each edge $e$ at distance $d$ from the root is defined by $r_e=2^dX_e$ where the $X_e$ are i.i.d. positive random variables bounded away from zero and infinity. It is shown that $mathbf{E}R_n=nmathbf{E}X_e-(operatorname {mathbf{Var}}(X_e)/mathbf{E}X_e)ln n+O(1)$ and $operatorname {mathbf{Var}}(R_n)=O(1)$. Moreover, we establish sub-Gaussian tail bounds for $R_n$. We also discuss some possible extensions to supercritical Galton--Watson trees.
65 - Hui He , Matthias Winkel 2017
In this paper we study the vertex cut-trees of Galton-Watson trees conditioned to have $n$ leaves. This notion is a slight variation of Dieuleveuts vertex cut-tree of Galton-Watson trees conditioned to have $n$ vertices. Our main result is a joint Gromov-Hausdorff-Prokhorov convergence in the finite variance case of the Galton-Watson tree and its vertex cut-tree to Bertoin and Miermonts joint distribution of the Brownian CRT and its cut-tree. The methods also apply to the infinite variance case, but the problem to strengthen Dieuleveuts and Bertoin and Miermonts Gromov-Prokhorov convergence to Gromov-Hausdorff-Prokhorov remains open for their models conditioned to have $n$ vertices.
This paper considers the asymptotic distribution of the longest edge of the minimal spanning tree and nearest neighbor graph on X_1,...,X_{N_n} where X_1,X_2,... are i.i.d. in Re^2 with distribution F and N_n is independent of the X_i and satisfies N_n/nto_p1. A new approach based on spatial blocking and a locally orthogonal coordinate system is developed to treat cases for which F has unbounded support. The general results are applied to a number of special cases, including elliptically contoured distributions, distributions with independent Weibull-like margins and distributions with parallel level curves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا