Security is a critical issue in full duplex (FD) communication systems due to the broadcast nature of wireless channels. In this paper, joint design of information and artificial noise beamforming vectors is proposed for the FD simultaneous wireless information and power transferring (FD-SWIPT) systems with loopback self-interference cancellation. To guarantee high security and energy harvesting performance of the FD-SWIPT system, the proposed design is formulated as a secrecy rate maximization problem under energy transfer rate constraints. Although the secrecy rate maximization problem is non-convex, we solve it via semidefinite relaxation and a two-dimensional search. We prove the optimality of our proposed algorithm and demonstrate its performance via simulations.