Do you want to publish a course? Click here

Spectral Asymmetry of Atoms in the van der Waals Potential of an Optical Nanofiber

119   0   0.0 ( 0 )
 Added by Pablo Solano
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the modification of the transmission spectra of cold $^{87}$Rb atoms in the proximity of an optical nanofiber (ONF). Van der Waals interactions between the atoms an the ONF surface decrease the resonance frequency of atoms closer to the surface. An asymmetric spectra of the atoms holds information of their spatial distribution around the ONF. We use a far-detuned laser beam coupled to the ONF to thermally excite atoms at the ONF surface. We study the change of transmission spectrum of these atoms as a function of heating laser power. A semi-classical phenomenological model for the thermal excitation of atoms in the atom-surface van der Waals bound states is in good agreement with the measurements. This result suggests that van der Waals potentials could be used to trap and probe atoms at few nanometers from a dielectric surfaces, a key tool for hybrid photonic-atomic quantum systems.

rate research

Read More

We study ultracold long-range collisions of heteronuclear alkali-metal dimers with a reservoir gas of alkali-metal Rydberg atoms in a two-photon laser excitation scheme. In a low density regime where molecules remain outside the Rydberg orbits of the reservoir atoms, we show that the two-photon photoassociation (PA) of the atom-molecule pair into a long-range bound trimer state is efficient over a broad range of atomic Rydberg channels. As a case study, we obtain the PA lineshapes for the formation of trimers composed of KRb molecules in the rovibrational ground state and excited Rb atoms in the asymptotic Rydberg levels $n^{2}S_j$ and $n^{2}D_j$, for $n=20-80$. We predict atom-molecule binding energies in the range $10-10^3$ kHz for the first vibrational state below threshold. The average trimer formation rate is order $10^8, {rm s}^{-1}$ at 1.0 $mu$K, and depends weakly on the principal quantum number $n$. Our results set the foundations for a broader understanding of exotic long range collisions of dilute molecules in ultracold atomic Rydberg reservoirs.
We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- and blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed.
We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with inter-particle distances of around 5 {mu}m are created by first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and from the arrival time distributions the size of the Rydberg cluster after expansion is calculated. Our experimental results agree well with a numerical simulation of the van der Waals explosion.
We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C$_6$H$_5$CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within pm5%. By exploiting the different dipole-moment-to-mass (mu/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex.
Highly polarizable metastable He* ($mathrm{2^3S}$) and Ne* ($mathrm{2^3P}$) atoms have been diffracted from a 100 nm period silicon nitride transmission grating and the van der Waals coefficients $C_3$ for the interaction of the excited atoms with the silicon nitride surface have been determined from the diffraction intensities out to the 10th order. The results agree with calculations based on the non-retarded Lifshitz formula.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا