This work is devoted to the algebraic and arithmetic properties of Rankin-Cohen brackets allowing to define and study them in several natural situations of number theory. It focuses on the property of these brackets to be formal deformations of the algebras on which they are defined, with related questions on restriction-extension methods. The general algebraic results developed here are applied to the study of formal deformations of the algebra of weak Jacobi forms and their relation with the Rankin-Cohen brackets on modular and quasimodular forms.
For any non-negative integer v we construct explicitly [v/2]+1 independent covariant bilinear differential operators from J_{k,m} x J_{k,m} to J_{k+k+v,m+m}. As an application we construct a covariant bilinear differential operator mapping S_k^{(2)} x S^{(2)}_{k} to S^{(2)}_{k+k+v}. Here J_{k,m} denotes the space of Jacobi forms of weight k and index m and S^{(2)}_k the space of Siegel modular forms of degree 2 and weight k. The covariant bilinear differential operators constructed are analogous to operators already studied in the elliptic case by R. Rankin and H. Cohen and we call them Rankin-Cohen operators.
Eichler and Zagier developed a theory of Jacobi forms to understand and extend Maass work on the Saito-Kurokawa conjecture. Later Skoruppa introduced skew-holomorphic Jacobi forms, which play an important role in understanding liftings of modular forms and Jacobi forms. In this paper, we explain a relation between holomorphic Jacobi forms and skew-holomorphic Jacobi forms in terms of a group cohomology. More precisely, we introduce an isomorphism from the direct sum of the space of Jacobi cusp forms on $Gamma^J$ and the space of skew-holomorphic Jacobi cusp forms on $Gamma^J$ with the same half-integral weight to the Eichler cohomology group of $Gamma^J$ with a coefficient module coming from polynomials.
Families of quasimodular forms arise naturally in many situations such as curve counting on Abelian surfaces and counting ramified covers of orbifolds. In many cases the family of quasimodular forms naturally arises as the coefficients of a Taylor expansion of a Jacobi form. In this note we give examples of such expansions that arise in the study of partition statistics. The crank partition statistic has gathered much interest recently. For instance, Atkin and Garvan showed that the generating functions for the moments of the crank statistic are quasimodular forms. The two variable generating function for the crank partition statistic is a Jacobi form. Exploiting the structure inherent in the Jacobi theta function we construct explicit expressions for the functions of Atkin and Garvan. Furthermore, this perspective opens the door for further investigation including a study of the moments in arithmetic progressions. We conduct a thorough study of the crank statistic restricted to a residue class modulo 2.
Weak Jacobi forms of weight $0$ and index $m$ can be exponentially lifted to meromorphic Siegel paramodular forms. It was recently observed that the Fourier coefficients of such lifts are then either fast growing or slow growing. In this note we investigate the space of weak Jacobi forms that lead to slow growth. We provide analytic and numerical evidence for the conjecture that there are such slow growing forms for any index $m$.