Do you want to publish a course? Click here

A new distribution for multiplicities in leptonic and hadronic collisions at high energies

458   0   0.0 ( 0 )
 Added by Manjit Kaur Dr.
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Charged particles production in the electron-positron, pbarp and pp collisions in full phase space as well as in the restricted phase space slices, at high energies are described with predictions from shifted Gompertz distribution, a model of adoption of innovations. The distribution has been extensively used in diffusion theory, social networks and forecasting. A two-component model in which PDF is obtained from the superposition of two shifted Gompertz distributions has been introduced to improve the fitting of the experimental distributions by several orders. The two-components correspond to the two subgroups of a data set, one representing the soft interactions and the other semi-hard interactions. Mixing is done by appropriately assigning weights to each subgroup. Our first attempt to analyse the data with shifted Gompertz distribution has produced extremely good results. It is suggested that the distribution may be included in the host of distributions more often used for the multiplicity analyses.

rate research

Read More

101 - S. Sharma , M. Kaur , S. Thakur 2017
Multiplicity distributions of charged particles produced in the $e^{+}e^{-}$ collisions at LEP2 energies ranging from 91 to 206 GeV in full phase space, are compared with predictions from Tsallis $q$-statistics and the recently proposed Weibull distribution functions.~The analysis uses data from two LEP experiments, L3 and OPAL.~It is shown that Tsallis $q$-statistics explains the data in a statistically acceptable manner in full phase space at all energies, while the Weibull distribution fails to explain the underlying properties of the data.~Modifications to the distributions proposed earlier, are applied to uncover manifold improvements in explaining the data characteristics.
557 - F.W. Bopp 1996
A simple phenomenological introduction to the physics of multi-pomeron exchange amplitudes in connection with the Abramovski-Gribov-Kancheli (AGK) cutting rules is given. The AGK cutting rules are applied to obtain qualitative and quantitative predictions on multiparticle production at high energies. On this basis, particle production in hadron-hadron scattering, photoproduction, and in particular the transition to deep-inelastic scattering is discussed.
104 - G. Giacomelli 2008
A brief historical review is made of the hadron-hadron (hh) total cross section and hadron-nucleus absorption cross section measurements, made mainly at high energy proton synchrotrons. Then I shall discuss low p_tprocesses, including diffraction processes and fragmentation of nuclei in nucleus-nucleus collisions. Nucleus-nucleus collisions at higher energy colliders are then considered, mainly in the context of the search for the gluon quark plasma. Conclusions and a short discussion on perspectives follow.
The hadron inclusive spectra in pp collisions at high energies are analyzed within a soft QCD model, namely the quark-gluon string model. In addition to the sea quark distribution in the incoming proton we consider also the unintegrated gluon distribution that has an increasing behaviour when the gluon transverse momentum grows. It leads to an increase of the inclusive spectra of hadrons and their multiplicity in the central rapidity region of pp collision at LHC energies.
A phenomenological model for the description of the single and double diffractive excitation in $pp$ collisions at high energies is presented. Considering the Good -- Walker approach, we propose a model for the eigenstates of the scattering operator and for the treatment of the interaction between them, with the high energy behavior of the cross section driven by perturbative QCD. The behavior of the total, elastic, single and double diffractive cross sections are analyzed and predictions for the energies of Run 3 of the LHC and those of the Cosmic Rays experiments are derived. We demonstrate that the model describes the current data for the energy dependence of the cross sections. A comparison with the recent data for the $rho$ parameter and the differential elastic cross section are also presented and shortcomings of the current model are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا