No Arabic abstract
Exclusive photoproduction cross sections have been measured for the process $gamma p rightarrow ppi^0(e^+e^-(gamma))$ with the Dalitz decay final state using tagged photon energies in the range of $E_{gamma} = 1.275-5.425$ GeV. The complete angular distribution of the final state $pi^0$, for the entire photon energy range up to large values of $t$ and $u$, has been measured for the first time. The data obtained show that the cross section $dsigma/dt$, at mid to large angles, decreases with energy as $s^{-6.89pm 0.26} $. This is in agreement with the perturbative QCD quark counting rule prediction of $s^{-7} $. Paradoxically, the size of angular distribution of measured cross sections is greatly underestimated by the QCD based Generalized Parton Distribution mechanism at highest available invariant energy $s=11$ GeV$^2$. At the same time, the Regge exchange based models for $pi^0$ photoproduction are more consistent with experimental data.
Exclusive photoproduction of $rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $gamma p to pi^{+}pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{pipi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{gamma p}$. The phase space restrictions are $0.5 < m_{pipi} < 2.2$ GeV, ${vert tvert < 1.5}$ GeV${}^2$, and ${20 < W_{gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{pipi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $rho^{0}(770)$ meson mass and width at $m_rho = 770.8 {}^{+2.6}_{-2.7}$ (tot) MeV and $Gamma_rho = 151.3 {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $rho^0(770)$ contribution to the $pi^{+}pi^{-}$ cross sections and measure it as a function of $t$ and $W_{gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $alpha(t)$ dominates, the intercept $alpha(t{=}0) = 1.0654 {}^{+0.0098}_{-0.0067}$ (tot) and the slope $alpha^prime(t{=}0) = 0.233 {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.
Exclusive $pi^0$ electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in $Q^2$, $x_B$, $t$, and $phi_pi$, in the $Q^2$ range from 1.0 to 4.6 GeV$^2$, $-t$ up to 2 GeV$^2$, and $x_B$ from 0.1 to 0.58. Structure functions $sigma_T +epsilon sigma_L, sigma_{TT}$ and $sigma_{LT}$ were extracted as functions of $t$ for each of 17 combinations of $Q^2$ and $x_B$. The data were compared directly with two handbag-based calculations including both longitudinal and transversity GPDs. Inclusion of only longitudinal GPDs very strongly underestimates $sigma_T +epsilon sigma_L$ and fails to account for $sigma_{TT}$ and $sigma_{LT}$, while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity flip and helicity non-flip processes. The results confirm that exclusive $pi^0$ electroproduction offers direct experimental access to the transversity GPDs.
Exclusive neutral-pion electroproduction ($epto e^prime p^prime pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4sigma/dtdQ^2dx_Bdphi_pi$ and structure functions $sigma_T+epsilonsigma_L, sigma_{TT}$ and $sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.
A search for charmless three-body decays of $B^0$ and $B_{s}^0$ mesons with a $K_{rm S}^0$ meson in the final state is performed using the $pp$ collision data, corresponding to an integrated luminosity of $1.0,mbox{fb}^{-1}$, collected at a centre-of-mass energy of $7mathrm{,Tekern -0.1em V}$ recorded by the LHCb experiment. Branching fractions of the $B_{(s)}^0 to K_{rm S}^0 h^{+} h^{prime -}$ decay modes ($h^{(prime)} = pi, K$), relative to the well measured $B^0 to K_{rm S}^0 pi^{+} pi^{-}$ decay, are obtained. First observation of the decay modes $B_s^0 to K_{rm S}^0 K^{pm} pi^{mp}$ and $B_s^0 to K_{rm S}^0 pi^{+} pi^{-}$ and confirmation of the decay $B^0 to K_{rm S}^0 K^{pm} pi^{mp}$ are reported. The following relative branching fraction measurements or limits are obtained begin{eqnarray*} onumber frac{{cal B}(B^0 to K_{rm S}^0 K^{pm} pi^{mp})}{{cal B}(B^0 to K_{rm S}^0 pi^{+} pi^{-})} &=& 0.128 pm 0.017 , ({rm stat.}) pm 0.009 , ({rm syst.}) ,, onumber frac{{cal B}(B^0 to K_{rm S}^0 K^{+} K^{-} )}{{cal B}(B^0 to K_{rm S}^0 pi^{+} pi^{-})} &=& 0.385 pm 0.031 , ({rm stat.}) pm 0.023 , ({rm syst.}) ,, onumber frac{{cal B}(B_s^0 to K_{rm S}^0 pi^{+} pi^{-} )}{{cal B}(B^0 to K_{rm S}^0 pi^{+} pi^{-})} &=& 0.29phantom{0} pm 0.06phantom{0} , ({rm stat.}) pm 0.03phantom{0} , ({rm syst.}) pm 0.02 , (f_s/f_d) ,, onumber frac{{cal B}(B_s^0 to K_{rm S}^0 K^{pm} pi^{mp})}{{cal B}(B^0 to K_{rm S}^0 pi^{+} pi^{-})} &=& 1.48phantom{0} pm 0.12phantom{0} , ({rm stat.}) pm 0.08phantom{0} , ({rm syst.}) pm 0.12 , (f_s/f_d) ,, onumber frac{{cal B}(B_s^0 to K_{rm S}^0 K^{+} K^{-} )}{{cal B}(B^0 to K_{rm S}^0 pi^{+} pi^{-})} &in& [0.004;0.068] ; {rm at ;; 90% ; CL} ,. end{eqnarray*}
We report the first measurement of the $T$-odd moments in the decay $D^{0} rightarrow K_{S}^{0} pi^{+} pi^{-} pi^{0}$ from a data sample corresponding to an integrated luminosity of $966,{rm fb}^{-1}$ collected by the Belle experiment at the KEKB asymmetric-energy $e^+ e^-$ collider. From these moments we determine the $CP$-violation-sensitive asymmetry $a_{CP}^{Ttext{-odd}} = left[-0.28 pm 1.38 ~(rm{stat.}) ^{+0.23}_{-0.76} ~(rm{syst.})right] times 10^{-3}$, which is consistent with no $CP$ violation. In addition, we perform $a_{CP}^{Ttext{-odd}}$ measurements in different regions of the $D^{0} rightarrow K_{S}^{0} pi^{+} pi^{-} pi^{0}$ phase space; these are also consistent with no $CP$ violation.