Do you want to publish a course? Click here

Symmetry Preservation and Critical Fluctuations in a Pseudospin Crossover Perovskite LaCoO$_3$

268   0   0.0 ( 0 )
 Added by Yasuhiro Shimizu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin-state crossover beyond a conventional ligand-field theory has been a fundamental issue in condensed matter physics. Here, we report microscopic observations of spin states and low-energy dynamics through orbital-resolved NMR spectroscopy in the prototype compound LaCoO$_3$. The $^{59}$Co NMR spectrum shows the preserved crystal symmetry across the crossover, inconsistent with $d$ orbital ordering due to the Jahn-Teller distortion. The orbital degeneracy results in a pseudospin ($tilde{J} = 1$) excited state with an orbital moment observed as $^{59}$Co hyperfine coupling tensors. We found that the population of the excited state evolves above the heart crossover temperature. The crossover involves critical spin-state fluctuations emerging under the magnetic field. These results suggest that the spin-state crossover can be mapped into a statistical problem, analogous to the supercritical liquid in liquid-gas transition.



rate research

Read More

The spin transition in LaCoO$_3$ has been investigated within the density-functional theory + dynamical mean-field theory formalism using continuous time quantum Monte Carlo. Calculations on the experimental rhombohedral atomic structure with two Co sites per unit cell show that an independent treatment of the Co atoms results in a ground state with strong charge fluctuations induced by electronic correlations. Each atom shows a contribution from either a $d^5$ or a $d^7$ state in addition to the main $d^6$ state. These states play a relevant role in the spin transition which can be understood as a low spin-high spin (LS-HS) transition with significant contributions ($sim$ $10$ %) to the LS and HS states of $d^5$ and $d^7$ states respectively. A thermodynamic analysis reveals a significant kinetic energy gain through introduction of charge fluctuations, which in addition to the potential energy reduction lowers the total energy of the system.
We study ferromagnetic ordering and microscopic inhomogeneity in tensile strained LaCoO$_3$ using numerical simulations. We argue that both phenomena originate from effective superexchange interactions between atoms in the high-spin (HS) state mediated by the intermediate-spin excitations. We derive a model of the HS excitation as a bare atomic state dressed by electron and electron-hole fluctuations on the neighbor atoms. We construct a series of approximations to account for electron correlation effects responsible for HS fluctuations and magnetic exchange. The obtained amplitudes and directional dependence of magnetic couplings between the dressed HS states show a qualitative agreement with experimental observations and provide a new physical picture of LaCoO$_3$ films.
We carried out temperature-dependent (20 - 550 K) measurements of resonant inelastic X-ray scattering on LaCoO$_3$ to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantized the renormalized crystal-field excitation energies and spin-state populations. We show that the screening of the on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO$_3$. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.
The effect of pressure on magnetic properties of LaCoO$_3$ is studied experimentally and theoretically. The pressure dependence of magnetic susceptibility $chi$ of LaCoO$_3$ is obtained by precise measurements of $chi$ as a function of the hydrostatic pressure $P$ up to 2 kbar in the temperature range from 78 K to 300 K. A pronounced magnitude of the pressure effect is found to be negative in sign and strongly temperature dependent. The obtained experimental data are analysed by using a two-level model and DFT+U calculations of the electronic structure of LaCoO$_3$. In particular, the fixed spin moment method was employed to obtain a volume dependence of the total energy difference $Delta$ between the low spin and the intermediate spin states of LaCoO$_3$. Analysis of the obtained experimental $chi(P)$ dependence within the two-level model, as well as our DFT+U calculations, have revealed the anomalous large decrease in the energy difference $Delta$ with increasing of the unit cell volume. This effect, taking into account a thermal expansion, can be responsible for the temperatures dependence of $Delta$, predicting its vanishing near room temperature.
Spin crossover is expected to enrich unusual physical states in various types of condensed matter. Through inelastic neutron scattering, we study the spin-state excitations in the canonical and advanced platform, LaCoO$_3$, and reveal that the spatial correlation robustly maintains the seven-Co-site size below 300 K and the internal Co-$d$ electrons are spatially delocalized. By combining theoretical calculations, this dynamical short-range order is identified as a new collective unit for describing spin-state with dual spin-state nature beyond the conventional one-Co-site classification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا