Do you want to publish a course? Click here

The diverse magneto-optical selection rules in bilayer black phosphorus

67   0   0.0 ( 0 )
 Added by Jhao-Ying Wu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magneto-optical properties of bilayer phosphorene is investigated by the generalized tight-binding model and the gradient approximation. The vertical inter-Landau-level transitions, being sensitive to the polarization directions, are mainly determined by the spatial symmetries of sub-envelope functions on the distinct sublattices. The anisotropic excitations strongly depend on the electric and magnetic fields. A perpendicular uniform electric field could greatly diversify the selection rule, frequency, intensity, number and form of symmetric absorption peaks. Specifically, the unusual magneto-optical properties appear beyond the critical field as a result of two subgroups of Landau levels with the main and side modes. The rich and unique magneto-absorption spectra arise from the very close relations among the geometric structures, multiple intralayer and interlayer hopping integrals, and composite external fields.



rate research

Read More

The low-frequency magneto-optical properties of bilayer Bernal graphene are studied by the tight-binding model with four most important interlayer interactions taken into account. Since the main features of the wave functions are well depicted, the Landau levels can be divided into two groups based on the characteristics of the wave functions. These Landau levels lead to four categories of absorption peaks in the optical absorption spectra. Such absorption peaks own complex optical selection rules and these rules can be reasonably explained by the characteristics of the wave functions. In addition, twin-peak structures, regular frequency-dependent absorption rates and complex field-dependent frequencies are also obtained in this work. The main features of the absorption peaks are very different from those in monolayer graphene and have their origin in the interlayer interactions.
Resistivity measurements of a few-layer black phosphorus (bP) crystal in parallel magnetic fields up to 45 T are reported as a function of the angle between the in-plane field and the source-drain (S-D) axis of the device. The crystallographic directions of the bP crystal were determined by Raman spectroscopy, with the zigzag axis found within 5{deg} of the S-D axis, and the armchair axis in the orthogonal planar direction. A transverse magneto-resistance (TMR) as well as a classically-forbidden longitudinal magneto-resistance (LMR) are observed. Both are found to be strongly anisotropic and non-monotonic with increasing in-plane field. Surprisingly, the relative magnitude (in %) of the positive LMR is larger than the TMR above $sim$32 T. Considering the known anisotropy of bP whose zigzag and armchair effective masses differ by a factor of approximately seven, our experiment strongly suggests this LMR to be a consequence of the anisotropic Fermi surface of bP.
Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90$^circ$. These calculations are complemented with a simple $vec{k}cdotvec{p}$ model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90$^circ$ twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90$^circ$ simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V/{AA} out-of-plane electric field results in a $sim$60% increase in the hole effective mass along the y (x) axis and enhances the $m^*_{y}/m^*_{x}$ ($m^*_{x}/m^*_{y}$) ratio as much as by a factor of 40. Our DFT and $vec{k}cdotvec{p}$ simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.
We present an analytical tight-binding theory of the optical properties of graphene nanoribbons with zigzag edges. Applying the transfer matrix technique to the nearest-neighbor tight-binding Hamiltonian, we derive analytical expressions for electron wave functions and optical transition matrix elements for incident light polarized along the structure axis. It follows from the obtained results that optical selection rules result from the wave function parity factor $(-1)^J$, where $J$ is the band number. These selection rules are that $Delta J$ is odd for transitions between valence and conduction subbands and that $Delta J$ is even for transitions between only valence (conduction) subbands. Although these selection rules are different from those in armchair carbon nanotubes, there is a hidden correlation between absorption spectra of the two structures that should allow one to use them interchangeably in some applications. The correlation originates from the fact that van Hove singularities in the tubes are centered between those in the ribbons if the ribbon width is about a half of the tube circumference. The analysis of the matrix elements dependence on the electron wave vector for narrow ribbons shows a smooth non-singular behavior at the Dirac points and the points where the bulk states meet the edge states.
The low-frequency magneto-optical absorption spectra of bilayer Bernal graphene are studied within the tight-binding model and gradient approximation. The interlayer interactions strongly affect the electronic properties of the Landau levels (LLs), and thus enrich the optical absorption spectra. According to the characteristics of the wave functions, the low-energy LLs can be divided into two groups. This division results in four kinds of optical absorption peaks with complex optical selection rules. Observing the experimental convergent absorption frequencies close to zero magnetic field might be useful and reliable in determining the values of several hopping integrals. The dependence of the optical absorption spectra on the field strength is investigated in detail, and the results differ considerably from those of monolayer graphene.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا