Magic wavelengths for the $6s^2,^1S_0-6s6p,^3P_1^o$ transition in ytterbium atom


Abstract in English

The static and dynamic electric-dipole polarizabilities of the $6s^2,^1S_0$ and $6s6p,^3P_1^o$ states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the $6s^2,^1S_0-6s6p,^3P_1^o$ transition, we find two magic wavelengths at 1035.7(2) nm and 612.9(2) nm for the $6s^2,^1S_0-6s6p,^3P_1^o, M_J=0$ transition and three magic wavelengthes at 1517.68(6) nm, 1036.0(3) nm and 858(12) nm for the $6s^2,^1S_0-6s6p,^3P_1^o, M_J=pm1$ transitions. Such magic wavelengths are of particular interest for attaining the state-insensitive cooling, trapping, and quantum manipulation of neutral Yb atom.

Download