Do you want to publish a course? Click here

LEPA: Incentivizing Long-term Privacy-preserving Data Aggregation in Crowdsensing

188   0   0.0 ( 0 )
 Added by Zhikun Zhang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, we study the incentive mechanism design for real-time data aggregation, which holds a large spectrum of crowdsensing applications. Despite extensive studies on static incentive mechanisms, none of these are applicable to real-time data aggregation due to their incapability of maintaining PUs long-term participation. We emphasize that, to maintain PUs long-term participation, it is of significant importance to protect their privacy as well as to provide them a desirable cumulative compensation. Thus motivated, in this paper, we propose LEPA, an efficient incentive mechanism to stimulate long-term participation in real-time data aggregation. Specifically, we allow PUs to preserve their privacy by reporting noisy data, the impact of which on the aggregation accuracy is quantified with proper privacy and accuracy measures. Then, we provide a framework that jointly optimizes the incentive schemes in different time slots to ensure desirable cumulative compensation for PUs and thereby prevent PUs from leaving the system halfway. Considering PUs strategic behaviors and combinatorial nature of the sensing tasks, we propose a computationally efficient on-line auction with close-to-optimal performance in presence of NP-hardness of winner user selection. We further show that the proposed on-line auction satisfies desirable properties of truthfulness and individual rationality. The performance of LEPA is validated by both theoretical analysis and extensive simulations.



rate research

Read More

Incentive mechanism plays a critical role in privacy-aware crowdsensing. Most previous studies on co-design of incentive mechanism and privacy preservation assume a trustworthy fusion center (FC). Very recent work has taken steps to relax the assumption on trustworthy FC and allows participatory users (PUs) to add well calibrated noise to their raw sensing data before reporting them, whereas the focus is on the equilibrium behavior of data subjects with binary data. Making a paradigm shift, this paper aim to quantify the privacy compensation for continuous data sensing while allowing FC to directly control PUs. There are two conflicting objectives in such scenario: FC desires better quality data in order to achieve higher aggregation accuracy whereas PUs prefer adding larger noise for higher privacy-preserving levels (PPLs). To achieve a good balance therein, we design an efficient incentive mechanism to REconcile FCs Aggregation accuracy and individual PUs data Privacy (REAP). Specifically, we adopt the celebrated notion of differential privacy to measure PUs PPLs and quantify their impacts on FCs aggregation accuracy. Then, appealing to Contract Theory, we design an incentive mechanism to maximize FCs aggregation accuracy under a given budget. The proposed incentive mechanism offers different contracts to PUs with different privacy preferences, by which FC can directly control PUs. It can further overcome the information asymmetry, i.e., the FC typically does not know each PUs precise privacy preference. We derive closed-form solutions for the optimal contracts in both complete information and incomplete information scenarios. Further, the results are generalized to the continuous case where PUs privacy preferences take values in a continuous domain. Extensive simulations are provided to validate the feasibility and advantages of our proposed incentive mechanism.
Mobile crowdsensing (MCS) is an emerging sensing data collection pattern with scalability, low deployment cost, and distributed characteristics. Traditional MCS systems suffer from privacy concerns and fair reward distribution. Moreover, existing privacy-preserving MCS solutions usually focus on the privacy protection of data collection rather than that of data processing. To tackle faced problems of MCS, in this paper, we integrate federated learning (FL) into MCS and propose a privacy-preserving MCS system, called textsc{CrowdFL}. Specifically, in order to protect privacy, participants locally process sensing data via federated learning and only upload encrypted training models. Particularly, a privacy-preserving federated averaging algorithm is proposed to average encrypted training models. To reduce computation and communication overhead of restraining dropped participants, discard and retransmission strategies are designed. Besides, a privacy-preserving posted pricing incentive mechanism is designed, which tries to break the dilemma of privacy protection and data evaluation. Theoretical analysis and experimental evaluation on a practical MCS application demonstrate the proposed textsc{CrowdFL} can effectively protect participants privacy and is feasible and efficient.
85 - Yang Liu , Zhuo Ma , Ximeng Liu 2019
Recently, Google and other 24 institutions proposed a series of open challenges towards federated learning (FL), which include application expansion and homomorphic encryption (HE). The former aims to expand the applicable machine learning models of FL. The latter focuses on who holds the secret key when applying HE to FL. For the naive HE scheme, the server is set to master the secret key. Such a setting causes a serious problem that if the server does not conduct aggregation before decryption, a chance is left for the server to access the users update. Inspired by the two challenges, we propose FedXGB, a federated extreme gradient boosting (XGBoost) scheme supporting forced aggregation. FedXGB mainly achieves the following two breakthroughs. First, FedXGB involves a new HE based secure aggregation scheme for FL. By combining the advantages of secret sharing and homomorphic encryption, the algorithm can solve the second challenge mentioned above, and is robust to the user dropout. Then, FedXGB extends FL to a new machine learning model by applying the secure aggregation scheme to the classification and regression tree building of XGBoost. Moreover, we conduct a comprehensive theoretical analysis and extensive experiments to evaluate the security, effectiveness, and efficiency of FedXGB. The results indicate that FedXGB achieves less than 1% accuracy loss compared with the original XGBoost, and can provide about 23.9% runtime and 33.3% communication reduction for HE based model update aggregation of FL.
122 - Guocheng Liao , Xu Chen , 2019
We study a problem of privacy-preserving mechanism design. A data collector wants to obtain data from individuals to perform some computations. To relieve the privacy threat to the contributors, the data collector adopts a privacy-preserving mechanism by adding random noise to the computation result, at the cost of reduced accuracy. Individuals decide whether to contribute data when faced with the privacy issue. Due to the intrinsic uncertainty in privacy protection, we model individuals privacy-related decision using Prospect Theory. Such a theory more accurately models individuals behavior under uncertainty than the traditional expected utility theory, whose prediction always deviates from practical human behavior. We show that the data collectors utility maximization problem involves a polynomial of high and fractional order, the root of which is difficult to compute analytically. We get around this issue by considering a large population approximation, and obtain a closed-form solution that well approximates the precise solution. We discover that the data collector who considers the more realistic Prospect Theory based individual decision modeling would adopt a more conservative privacy-preserving mechanism, compared with the case based on the expected utility theory modeling. We also study the impact of Prospect Theory parameters, and concludes that more loss-averse or risk-seeking individuals will trigger a more conservative mechanism. When individuals have different Prospect Theory parameters, simulations demonstrate that the privacy protection first becomes stronger and then becomes weaker as the heterogeneity increases from a low value to a high one.
Federated learning (FL) has enabled training models collaboratively from multiple data owning parties without sharing their data. Given the privacy regulations of patients healthcare data, learning-based systems in healthcare can greatly benefit from privacy-preserving FL approaches. However, typical model aggregation methods in FL are sensitive to local model updates, which may lead to failure in learning a robust and accurate global model. In this work, we implement and evaluate different robust aggregation methods in FL applied to healthcare data. Furthermore, we show that such methods can detect and discard faulty or malicious local clients during training. We run two sets of experiments using two real-world healthcare datasets for training medical diagnosis classification tasks. Each dataset is used to simulate the performance of three different robust FL aggregation strategies when facing different poisoning attacks. The results show that privacy preserving methods can be successfully applied alongside Byzantine-robust aggregation techniques. We observed in particular how using differential privacy (DP) did not significantly impact the final learning convergence of the different aggregation strategies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا