No Arabic abstract
The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that within the next decade pulsar timing will extend the window by making the first detections in the nano-Hertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. Paradoxically however, we find that longitudinal modes will be very difficult to detect due to the large variance in the pulsar-pulsar correlation patterns for these modes. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal and scalar longitudinal modes at frequencies of 1/year are constrained: ${cal A}_{rm VL} < 4.1times 10^{-16}$ and ${cal A}_{rm SL} < 3.7times 10^{-17}$, while the bounds on the energy density for a scale invariant cosmological background are: $Omega_{rm VL}h^2 < 3.5 times 10^{-11}$ and $Omega_{rm SL}h^2 < 3.2 times 10^{-13}$.
We extend our previous work on applying CMB techniques to the mapping of gravitational-wave backgrounds to backgrounds which have non-GR polarisations. Our analysis and results are presented in the context of pulsar-timing array observations, but the overarching methods are general, and can be easily applied to LIGO or eLISA observations using appropriately modified response functions. Analytic expressions for the pulsar-timing response to gravitational waves with non-GR polarisation are given for each mode of a spin-weighted spherical-harmonic decomposition of the background, which permit the signal to be mapped across the sky to any desired resolution. We also derive the pulsar-timing overlap reduction functions for the various non-GR polarisations, finding analytic forms for anisotropic backgrounds with scalar-transverse (breathing) and vector-longitudinal polarisations, and a semi-analytic form for scalar-longitudinal backgrounds. Our results indicate that pulsar-timing observations will be completely insensitive to scalar-transverse mode anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond quadrupole. Analogously to our previous findings that pulsar-timing observations lack sensitivity to tensor-curl modes for a transverse-traceless tensor background, we also find insensitivity to vector-curl modes for a vector-longitudinal background.
Pulsar timing arrays are sensitive to gravitational wave perturbations produced by individual supermassive black hole binaries during their early inspiral phase. Modified gravity theories allow for the emission of gravitational dipole radiation, which is enhanced relative to the quadrupole contribution for low orbital velocities, making the early inspiral an ideal regime to test for the presence of modified gravity effects. Using a theory-agnostic description of modified gravity theories based on the parametrized post-Einsteinian framework, we explore the possibility of detecting deviations from General Relativity using simulated pulsar timing array data, and provide forecasts for the constraints that can be achieved. We generalize the {tt enterprise} pulsar timing software to account for possible additional polarization states and modifications to the phase evolution, and study how accurately the parameters of simulated signals can be recovered. We find that while a pure dipole model can partially recover a pure quadrupole signal, there is little possibility for confusion when the full model with all polarization states is used. With no signal present, and using noise levels comparable to those seen in contemporary arrays, we produce forecasts for the upper limits that can be placed on the amplitudes of alternative polarization modes as a function of the sky location of the source.
General relativity has predicted the existence of gravitational waves (GW), which are waves of the distortions of space-time with two degrees of polarization and the propagation speed of light. Alternative theories predict more polarizations, up to a maximum of six, and possible deviation of propagation speed from the light speed. The present paper reviews recent proposals to test the gravity theories in the radiation regime by observing GWs using pulsar timing arrays.
The debate on gravity theories to extend or modify General Relativity is very active today because of the issues related to ultra-violet and infra-red behavior of Einsteins theory. In the first case, we have to address the Quantum Gravity problem. In the latter, dark matter and dark energy, governing the large scale structure and the cosmological evolution, seem to escape from any final fundamental theory and detection. The state of art is that, up to now, no final theory, capable of explaining gravitational interaction at any scale, has been formulated. In this perspective, many research efforts are devoted to test theories of gravity by space-based experiments. Here we propose straightforward tests by the GINGER experiment, which, being Earth based, requires little modeling of external perturbation, allowing a thorough analysis of the systematics, crucial for experiments where sensitivity breakthrough is required. Specifically, we want to show that it is possible to constrain parameters of gravity theories, like scalar-tensor or Horava-Lifshitz gravity, by considering their post-Newtonian limits matched with experimental data. In particular, we use the Lense-Thirring measurements provided by GINGER to find out relations among the parameters of theories and finally compare the results with those provided by LARES and Gravity Probe-B satellites.
Recent years have seen a burgeoning interest in using pulsar timing arrays (PTAs) as gravitational-wave (GW) detectors. To date, that interest has focused mainly on three particularly promising source types: supermassive--black-hole binaries, cosmic strings, and the stochastic background from early-Universe phase transitions. In this paper, by contrast, our aim is to investigate the PTA potential for discovering unanticipated sources. We derive significant constraints on the available discovery space based solely on energetic and statistical considerations: we show that a PTA detection of GWs at frequencies above ~3.e-5 Hz would either be an extraordinary coincidence or violate cherished beliefs; we show that for PTAs GW memory can be more detectable than direct GWs, and that, as we consider events at ever higher redshift, the memory effect increasingly dominates an events total signal-to-noise ratio. The paper includes also a simple analysis of the effects of pulsar red noise in PTA searches, and a demonstration that the effects of periodic GWs in the 10^-8 -- 10^-4.5 Hz band would not be degenerate with small errors in standard pulsar parameters (except in a few narrow bands).