Do you want to publish a course? Click here

BEC array in a Malleable Optical Trap formed in a Traveling Wave Cavity

59   0   0.0 ( 0 )
 Added by Andrea Bertoldi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although quantum degenerate gases of neutral atoms have shown remarkable progress in the study of many body quantum physics, condensed matter physics, precision measurements, and quantum information processing, experimental progress is needed in order to reach their full potential in these fields. More complex spatial geometries as well as novel methods for engineering interesting interactions are needed. Here we demonstrate a novel experimental platform for the realization of quantum degenerate gases with a wide range of tune-ability in the spatial geometries experienced by the atoms and with the possibility of non-trivial long-range interactions both within and between multiple 87Rb Bose-Einstein condensates (BECs). We explore the use of a large mode-volume bow-tie ring cavity resonant at two wavelengths, $lambda$ =1560 and 780 nm, for the creation of multiple BECs within a Malleable optical trap which also possesses the ability of photon-mediated long-range interactions. By exciting diverse transverse modes at 1560 nm, we can realize many optical trapping geometries which can open the door to spatial quantum state engineering with cavity-coupled BECs. As representative examples we realize a BEC in the fundamental TEM00 and a double BEC in the TEM01 mode of the cavity. By controlling the power between the fundamental and the higher transverse cavity mode, splitting and merging of cold thermal atomic ensemble is shown as well as the potential of creating more complex trapping geometries such as uniform potentials. Due to the double resonance of the cavity, we can envision a quantum network of BECs coupled via cavity-mediated interactions in non-trivial geometries.



rate research

Read More

We demonstrate dynamical control of the superradiant transition of cavity-BEC system via periodic driving of the pump laser. We show that the dominant density wave order of the superradiant state can be suppressed, and that the subdominant competing order of Bose-Einstein condensation emerges in the steady state. Furthermore, we show that additional, non-equilibrium density wave orders, which do not exist in equilibrium, can be stabilized dynamically. Finally, for strong driving, chaotic dynamics emerges.
We study dipolar relaxation of a chromium BEC loaded into a 3D optical lattice. We observe dipolar relaxation resonances when the magnetic energy released during the inelastic collision matches an excitation towards higher energy bands. A spectroscopy of these resonances for two orientations of the magnetic field provides a 3D band spectroscopy of the lattice. The narrowest resonance is registered for the lowest excitation energy. Its line-shape is sensitive to the on-site interaction energy. We use such sensitivity to probe number squeezing in a Mott insulator, and we reveal the production of three-body states with entangled spin and orbital degrees of freedom.
We report the all-optical production of a Rb87 Bose-Einstein condensate (BEC) in a simple 1.06 micron dipole trap experiment. We load a single beam dipole trap directly from a magneto-optic trap (MOT) using an optimized loading sequence. After evaporation in the single beam, a second crossed beam is used for compression. The intensity in both beams is then reduced for evaporation to BEC. We obtain a BEC with 3.5E4 atoms after 3 seconds of total evaporation time. We also give a detailed account of the thermal distribution in cross beam traps. This account highlights the possible difficulties in using shorter wavelength lasers to condense all optically.
We establish a new geometric wave function that combined with a variational principle efficiently describes a system of bosons interacting in a one-dimensional trap. By means of a a combination of the exact wave function solution for contact interactions and the asymptotic behaviour of the harmonic potential solution we obtain the ground state energy, probability density and profiles of a few boson system in a harmonic trap. We are able to access all regimes, ranging from the strongly attractive to the strongly repulsive one with an original and simple formulation.
Following the experimental realization of Dicke superradiance in Bose gases coupled to cavity light fields, we investigate the behavior of ultra cold fermions in a transversely pumped cavity. We focus on the equilibrium phase diagram of spinless fermions coupled to a single cavity mode and establish a zero temperature transition to a superradiant state. In contrast to the bosonic case, Pauli blocking leads to lattice commensuration effects that influence self-organization in the cavity light field. This includes a sequence of discontinuous transitions with increasing atomic density and tricritical superradiance. We discuss the implications for experiment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا