We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 < Mr < -16.0. We analyze their absorption line-strength indices by means of index-index diagrams and scaling relations and use the stellar population models to interpret them. We present ages, metallicities and abundance ratios obtained from these dEs within an aperture size of Re/8. We calculate [Na/Fe] from NaD, [Ca/Fe] from Ca4227 and [Mg/Fe] from Mgb. We find that [Na/Fe] is under-abundant with respect to solar while [Mg/Fe] is around solar. This is exactly opposite to what is found for giant ellipticals, but follows the trend with metallicity found previously for the Fornax dwarf NGC 1396. We discuss possible formation scenarios that can result in such elemental abundance patterns and we speculate that dEs have disk-like SFH favouring them to originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.