Do you want to publish a course? Click here

On the organization of grid and place cells: Neural de-noising via subspace learning

207   0   0.0 ( 0 )
 Added by David Schwartz M
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Place cells in the hippocampus are active when an animal visits a certain location (referred to as a place field) within an environment. Grid cells in the medial entorhinal cortex (MEC) respond at multiple locations, with firing fields that form a periodic and hexagonal tiling of the environment. The joint activity of grid and place cell populations, as a function of location, forms a neural code for space. An ensemble of codes is generated by varying grid and place cell population parameters. For each code in this ensemble, codewords are generated by stimulating a network with a discrete set of locations. In this manuscript, we develop an understanding of the relationships between coding theoretic properties of these combined populations and code construction parameters. These relationships are revisited by measuring the performances of biologically realizable algorithms implemented by networks of place and grid cell populations, as well as constraint neurons, which perform de-noising operations. Objectives of this work include the investigation of coding theoretic limitations of the mammalian neural code for location and how communication between grid and place cell networks may improve the accuracy of each populations representation. Simulations demonstrate that de-noising mechanisms analyzed here can significantly improve fidelity of this neural representation of space. Further, patterns observed in connectivity of each population of simulated cells suggest that inter-hippocampal-medial-entorhinal-cortical connectivity decreases downward along the dorsoventral axis.



rate research

Read More

Understanding how grid cells perform path integration calculations remains a fundamental problem. In this paper, we conduct theoretical analysis of a general representation model of path integration by grid cells, where the 2D self-position is encoded as a higher dimensional vector, and the 2D self-motion is represented by a general transformation of the vector. We identify two conditions on the transformation. One is a group representation condition that is necessary for path integration. The other is an isotropic scaling condition that ensures locally conformal embedding, so that the error in the vector representation translates proportionally to the error in the 2D self-position. Then we investigate the simplest transformation, i.e., the linear transformation, uncover its explicit algebraic and geometric structure as matrix Lie group of rotation, and establish the connection between the isotropic scaling condition and hexagon grid patterns of grid cells under the linear transformation. Finally, with our optimization-based approach, we manage to learn hexagon grid patterns that share similar properties of the grid cells in the rodent brain. The learned model is capable of accurate long distance path integration.
Grid cells in the entorhinal cortex are believed to establish their regular, spatially correlated firing patterns by path integration of the animals motion. Mechanisms for path integration, e.g. in attractor network models, predict stochastic drift of grid responses, which is not observed experimentally. We demonstrate a biologically plausible mechanism of dynamic self-organization by which border cells, which fire at environmental boundaries, can correct such drift in grid cells. In our model, experience-dependent Hebbian plasticity during exploration allows border cells to learn connectivity to grid cells. Border cells in this learned network reset the phase of drifting grids. This error-correction mechanism is robust to environmental shape and complexity, including enclosures with interior barriers, and makes distinctive predictions for environmental deformation experiments. Our work demonstrates how diverse cell types in the entorhinal cortex could interact dynamically and adaptively to achieve robust path integration.
Cells respond to biophysical and biochemical signals. We developed a composite filament from collagen and silica particles modified to interact with collagen and/or present a laminin epitope (IKVAV) crucial for cell-matrix adhesion and signal transduction. This combines scaffolding and signaling and shows that local tuning of collagen organization enhances cell differentiation.
While the channel capacity reflects a theoretical upper bound on the achievable information transmission rate in the limit of infinitely many bits, it does not characterise the information transfer of a given encoding routine with finitely many bits. In this note, we characterise the quality of a code (i. e. a given encoding routine) by an upper bound on the expected minimum error probability that can be achieved when using this code. We show that for equientropic channels this upper bound is minimal for codes with maximal marginal entropy. As an instructive example we show for the additive white Gaussian noise (AWGN) channel that random coding---also a capacity achieving code---indeed maximises the marginal entropy in the limit of infinite messages.
In many neural systems anatomical motifs are present repeatedly, but despite their structural similarity they can serve very different tasks. A prime example for such a motif is the canonical microcircuit of six-layered neo-cortex, which is repeated across cortical areas, and is involved in a number of different tasks (e.g.sensory, cognitive, or motor tasks). This observation has spawned interest in finding a common underlying principle, a goal function, of information processing implemented in this structure. By definition such a goal function, if universal, cannot be cast in processing-domain specific language (e.g. edge filtering, working memory). Thus, to formulate such a principle, we have to use a domain-independent framework. Information theory offers such a framework. However, while the classical framework of information theory focuses on the relation between one input and one output (Shannons mutual information), we argue that neural information processing crucially depends on the combination of textit{multiple} inputs to create the output of a processor. To account for this, we use a very recent extension of Shannon Information theory, called partial information decomposition (PID). PID allows to quantify the information that several inputs provide individually (unique information), redundantly (shared information) or only jointly (synergistic information) about the output. First, we review the framework of PID. Then we apply it to reevaluate and analyze several earlier proposals of information theoretic neural goal functions (predictive coding, infomax, coherent infomax, efficient coding). We find that PID allows to compare these goal functions in a common framework, and also provides a versatile approach to design new goal functions from first principles. Building on this, we design and analyze a novel goal function, called coding with synergy. [...]

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا