Do you want to publish a course? Click here

Observational Constraint on Spherical Inhomogeneity with CMB and Local Hubble Parameter

108   0   0.0 ( 0 )
 Added by Chul-Moon Yoo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background(CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called $Lambda$-Lema^itre-Tolman-Bondi~($Lambda$LTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lema^itre-Robertson-Walker model. The late time $Lambda$LTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the $Lambda$LTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.



rate research

Read More

It is shown, from the two independent approaches of McCrea-Milne and of Zeldovich, that one can fully recover the set equations corresponding to the relativistic equations of the expanding universe of Friedmann-Lemaitre-Robertson-Walker geometry. Although similar, the Newtonian and relativistic set of equations have a principal difference in the content and hence define two flows, local and global ones, thus naturally exposing the Hubble tension at the presence of the cosmological constant Lambda. From this, we obtain absolute constraints on the lower and upper values for the local Hubble parameter, sqrt{Lambda c^2/3} simeq 56.2$ and sqrt{Lambda c^2} simeq 97.3 (km/sec Mpc^{-1}), respectively. The link to the so-called maximum force--tension issue in cosmological models is revealed.
In order to explore the generic properties of a backreaction model for explaining the accelerated expansion of the Universe, we exploit two metrics to describe the late time Universe. Since the standard FLRW metric cannot precisely describe the late time Universe on small scales, the template metric with an evolving curvature parameter $kappa_{mathcal{D}}(t)$ is employed. However, we doubt the validity of the prescription for $kappa_{mathcal{D}}$, which motivates us apply observational Hubble parameter data (OHD) to constrain parameters in dust cosmology. First, for FLRW metric, by getting best-fit constraints of $Omega^{{mathcal{D}}_0}_m = 0.25^{+0.03}_{-0.03}$, $n = 0.02^{+0.69}_{-0.66}$, and $H_{mathcal{D}_0} = 70.54^{+4.24}_{-3.97} {rm km s^{-1} Mpc^{-1}}$, the evolutions of parameters are explored. Second, in template metric context, by marginalizing over $H_{mathcal{D}_0}$ as a prior of uniform distribution, we obtain the best-fit values of $n=-1.22^{+0.68}_{-0.41}$ and ${{Omega}_{m}^{mathcal{D}_{0}}}=0.12^{+0.04}_{-0.02}$. Moreover, we utilize three different Gaussian priors of $H_{mathcal{D}_0}$, which result in different best-fits of $n$, but almost the same best-fit value of ${{Omega}_{m}^{mathcal{D}_{0}}}sim0.12$. Also, the absolute constraints without marginalization of parameter are obtained: $n=-1.1^{+0.58}_{-0.50}$ and ${{Omega}_{m}^{mathcal{D}_{0}}}=0.13pm0.03$. With these constraints, the evolutions of the effective deceleration parameter $q^{mathcal{D}}$ indicate that the backreaction can account for the accelerated expansion of the Universe without involving extra dark energy component in the scaling solution context. Nevertheless, the results also verify that the prescription of $kappa_{mathcal{D}}$ is insufficient and should be improved.
In the paper, we consider two models in which dark energy is coupled with either dust matter or dark matter, and discuss the conditions that allow more time for structure formation to take place at high redshifts. These models are expected to have a larger age of the universe than that of $Lambda$CDM [universe consists of cold dark matter (CDM) and dark energy (a cosmological constant, $Lambda$)], so it can explain the formation of high redshift gravitationally bound systems which the $Lambda$CDM model cannot interpret. We use the observational Hubble parameter data (OHD) and Hubble parameter obtained from cosmic chronometers method ($H(z)$) in combination with baryon acoustic oscillation (BAO) data to constrain these models. With the best-fitting parameters, we discuss how the age, the deceleration parameter, and the energy density parameters evolve in the new universes, and compare them with that of $Lambda$CDM.
There is an approximately 9% discrepancy, corresponding to 2.4sigma, between two independent constraints on the expansion rate of the universe: one indirectly arising from the cosmic microwave background and baryon acoustic oscillations, and one more directly obtained from local measurements of the relation between redshifts and distances to sources. We argue that by taking into account the local gravitational potential at the position of the observer this tension - strengthened by the recent Planck results - is partially relieved and the concordance of the standard model of cosmology increased. We estimate that measurements of the local Hubble constant are subject to a cosmic variance of about 2.4% (limiting the local sample to redshifts z>0.010) or 1.3% (limiting it to z>0.023), a more significant correction than that taken into account already. Nonetheless, we show that one would need a very rare fluctuation to fully explain the offset in the Hubble rates. If this tension is further strengthened, a cosmology beyond the standard model may prove necessary.
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic oscillation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of $Omega_{m0}$. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at $z=0.22$, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parameter $w(z)$ of dark energy. We find no significant evidence for evolving $w(z)$. With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift isimproved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا