Do you want to publish a course? Click here

Learning Robust Dialog Policies in Noisy Environments

361   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Modern virtual personal assistants provide a convenient interface for completing daily tasks via voice commands. An important consideration for these assistants is the ability to recover from automatic speech recognition (ASR) and natural language understanding (NLU) errors. In this paper, we focus on learning robust dialog policies to recover from these errors. To this end, we develop a user simulator which interacts with the assistant through voice commands in realistic scenarios with noisy audio, and use it to learn dialog policies through deep reinforcement learning. We show that dialogs generated by our simulator are indistinguishable from human generated dialogs, as determined by human evaluators. Furthermore, preliminary experimental results show that the learned policies in noisy environments achieve the same execution success rate with fewer dialog turns compared to fixed rule-based policies.



rate research

Read More

Physical processes, camera movement, and unpredictable environmental conditions like the presence of dust can induce noise and artifacts in video feeds. We observe that popular unsupervised MOT methods are dependent on noise-free inputs. We show that the addition of a small amount of artificial random noise causes a sharp degradation in model performance on benchmark metrics. We resolve this problem by introducing a robust unsupervised multi-object tracking (MOT) model: AttU-Net. The proposed single-head attention model helps limit the negative impact of noise by learning visual representations at different segment scales. AttU-Net shows better unsupervised MOT tracking performance over variational inference-based state-of-the-art baselines. We evaluate our method in the MNIST-MOT and the Atari game video benchmark. We also provide two extended video datasets: ``Kuzushiji-MNIST MOT which consists of moving Japanese characters and ``Fashion-MNIST MOT to validate the effectiveness of the MOT models.
414 - Eshagh Kargar , Ville Kyrki 2021
Driving in a complex urban environment is a difficult task that requires a complex decision policy. In order to make informed decisions, one needs to gain an understanding of the long-range context and the importance of other vehicles. In this work, we propose to use Vision Transformer (ViT) to learn a driving policy in urban settings with birds-eye-view (BEV) input images. The ViT network learns the global context of the scene more effectively than with earlier proposed Convolutional Neural Networks (ConvNets). Furthermore, ViTs attention mechanism helps to learn an attention map for the scene which allows the ego car to determine which surrounding cars are important to its next decision. We demonstrate that a DQN agent with a ViT backbone outperforms baseline algorithms with ConvNet backbones pre-trained in various ways. In particular, the proposed method helps reinforcement learning algorithms to learn faster, with increased performance and less data than baselines.
Motivated by the needs of resource constrained dialog policy learning, we introduce dialog policy via differentiable inductive logic (DILOG). We explore the tasks of one-shot learning and zero-shot domain transfer with DILOG on SimDial and MultiWoZ. Using a single representative dialog from the restaurant domain, we train DILOG on the SimDial dataset and obtain 99+% in-domain test accuracy. We also show that the trained DILOG zero-shot transfers to all other domains with 99+% accuracy, proving the suitability of DILOG to slot-filling dialogs. We further extend our study to the MultiWoZ dataset achieving 90+% inform and success metrics. We also observe that these metrics are not capturing some of the shortcomings of DILOG in terms of false positives, prompting us to measure an auxiliary Action F1 score. We show that DILOG is 100x more data efficient than state-of-the-art neural approaches on MultiWoZ while achieving similar performance metrics. We conclude with a discussion on the strengths and weaknesses of DILOG.
Considering the importance of building a good Visual Dialog (VD) Questioner, many researchers study the topic under a Q-Bot-A-Bot image-guessing game setting, where the Questioner needs to raise a series of questions to collect information of an undisclosed image. Despite progress has been made in Supervised Learning (SL) and Reinforcement Learning (RL), issues still exist. Firstly, previous methods do not provide explicit and effective guidance for Questioner to generate visually related and informative questions. Secondly, the effect of RL is hampered by an incompetent component, i.e., the Guesser, who makes image predictions based on the generated dialogs and assigns rewards accordingly. To enhance VD Questioner: 1) we propose a Related entity enhanced Questioner (ReeQ) that generates questions under the guidance of related entities and learns entity-based questioning strategy from human dialogs; 2) we propose an Augmented Guesser (AugG) that is strong and is optimized for the VD setting especially. Experimental results on the VisDial v1.0 dataset show that our approach achieves state-of-theart performance on both image-guessing task and question diversity. Human study further proves that our model generates more visually related, informative and coherent questions.
Can we develop visually grounded dialog agents that can efficiently adapt to new tasks without forgetting how to talk to people? Such agents could leverage a larger variety of existing data to generalize to new tasks, minimizing expensive data collection and annotation. In this work, we study a setting we call Dialog without Dialog, which requires agents to develop visually grounded dialog models that can adapt to new tasks without language level supervision. By factorizing intention and language, our model minimizes linguistic drift after fine-tuning for new tasks. We present qualitative results, automated metrics, and human studies that all show our model can adapt to new tasks and maintain language quality. Baselines either fail to perform well at new tasks or experience language drift, becoming unintelligible to humans. Code has been made available at https://github.com/mcogswell/dialog_without_dialog

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا