No Arabic abstract
In the first part of this paper we critically examine the ultra-violet implications of theories that exhibit Vainshtein screening, taking into account both the standard Wilsonian perspective as well as more exotic possibilities. Aspects of this discussion draw on results from the second part of the paper in which we perform a general study of derivatively coupled scalar theories using non-perturbative exact renormalisation group techniques, which are of interest independently of their application to modified gravity. In this context, we demonstrate the suppression of quantum corrections within the Vainshtein radius and discuss the potential relation with the classicalisation conjecture. We question whether the latter can be considered a realistic candidate for UV completion of large-scale modifications of gravity on account of a dangerously low classicalisation/strong coupling scale.
Some of the simplest modifications to general relativity involve the coupling of additional scalar fields to the scalar curvature. By making a Weyl rescaling of the metric, these theories can be mapped to Einstein gravity with the additional scalar fields instead being coupled universally to matter. The resulting couplings to matter give rise to scalar fifth forces, which can evade the stringent constraints from local tests of gravity by means of so-called screening mechanisms. In this talk, we derive evolution equations for the matrix elements of the reduced density operator of a toy matter sector by means of the Feynman-Vernon influence functional. In particular, we employ a novel approach akin to the LSZ reduction more familiar to scattering-matrix theory. The resulting equations allow the analysis, for instance, of decoherence induced in atom-interferometry experiments by these classes of modified theories of gravity.
The Vainshtein screening mechanism relies on nonlinear interaction terms becoming dominant close to a compact source. However, theories displaying this mechanism are generally understood to be low-energy theories: it is unclear that operators emerging from UV completion do not interfere with terms inducing Vainshtein screening. In this work, we find a set of interacting massive Galileon theories that exhibit Vainshtein screening; examining potential UV completions of these theories, we determine that the screening does not survive the extension. We find that neglecting operators when integrating out a heavy field is non-trivial, and either care must be taken to ensure that omitted terms are small for the whole domain, or one is forced to work solely with the UV theory. We also comment on massive deformations of the familiar Wess-Zumino Galileons.
We develop a full four-dimensional numerical code to study scalar gravitational radiation emitted from binary systems and probe the Vainshtein mechanism in situations that break the static and spherical symmetry, relevant for binary pulsars as well as black holes and neutron stars binaries. The present study focuses on the cubic Galileon which arises as the decoupling limit of massive theories of gravity. Limitations associated with the numerical methods prevent us from reaching a physically realistic hierarchy of scales; nevertheless, within this context we observe the same power law scaling of the radiated power as previous analytic estimates, and confirm a strong suppression of the power emitted in the monopole and dipole as compared with quadrupole radiation. Following the trend to more physically realistic parameters, we confirm the suppression of the power emitted in scalar gravitational radiation and the recovery of General Relativity with good accuracy. This paves the way for future numerical work, probing more generic, physically relevant situations and sets of interactions that may exhibit the Vainshtein mechanism.
The $k$-essence theory is a prototypical class of scalar-field models that already gives rich phenomenology and has been a target of extensive studies in cosmology. General forms of shift-symmetric $k$-essence are known to suffer from formation of caustics in a planar-symmetric configuration, with the only exceptions of canonical and DBI-/cuscuton-type kinetic terms. With this in mind, we seek for multi-field caustic-free completions of a general class of shift-symmetric $k$-essence models in this paper. The field space in UV theories is naturally curved, and we introduce the scale of the curvature as the parameter that controls the mass of the heavy field(s) that would be integrated out in the process of EFT reduction. By numerical methods, we demonstrate that the introduction of a heavy field indeed resolves the caustic problem by invoking its motion near the would-be caustic formation. We further study the cosmological application of the model. By expanding the equations with respect to the curvature scale of the field space, we prove that the EFT reduction is successfully done by taking the limit of infinite curvature, both for the background and perturbation, with gravity included. The next leading-order computation is consistently conducted and shows that the EFT reduction breaks down in the limit of vanishing sound speed of the perturbation.
We investigate the linear cosmological perturbations in Hov{r}ava-Lifshitz gravity with a scalar field. Starting from the most general expressions of the metric perturbations as well as that of a canonical scalar field, we decompose the scalar, vector and tensor parts of the perturbed action. By reducing the Hamiltonian, we find that there are two independent degrees of freedom for the tensor perturbations while none for the vector perturbations. For the scalar perturbations, the remaining number of degrees of freedom, which are all gauge invariant, depends on whether the projectable condition is applied or not. For both cases, we lose the time reparametrization symmetry of any kind.