No Arabic abstract
We study the collider phenomenology of a neutral gauge boson $Z$ arising in minimal but anomalous $mathrm{U}(1)$ extensions of the Standard Model (SM). To retain gauge invariance of physical observables, we consider cancellation of gauge anomalies through the Green-Schwarz mechanism. We categorize a wide class of $mathrm{U}(1)$ extensions in terms of the new $mathrm{U}(1)$ charges of the left-handed quarks and leptons and the Higgs doublet. We derive constraints on some benchmark models using electroweak precision constraints and the latest 13 TeV LHC dilepton and dijet resonance search data. We calculate the decay rates of the exotic and rare one-loop $Z$ decays to $ZZ$ and $Z$-photon modes, which are the unique signatures of our framework. If observed, these decays could hint at anomaly cancellation through the Green-Schwarz mechanism. We also discuss the possible observation of such signatures at the LHC and at future ILC colliders.
Inspired by recent studies of high-scale decay constant or flavorful QCD axions, we review and clarify their existence in effective string models with anomalous $U(1)$ gauge groups. We find that such models, when coupled to charged scalars getting vacuum expectation values, always have one light axion, whose mass can only come from nonperturbative effects. If the main nonperturbative effect is from QCD, then it becomes a Peccei-Quinn axion candidate for solving the strong CP problem. We then study simple models with universal Green-Schwarz mechanism and only one charged scalar field: in the minimal gaugino condensation case the axion mass is tied to the supersymmetry breaking scale and cannot be light enough, but slightly refined models maintain a massless axion all the way down to the QCD scale. Both kinds of models can be extended to yield intermediate scale axion decay constants. Finally, we gauge flavorful axion models under an anomalous $U(1)$ and discuss the axion couplings which arise.
In this paper we investigate a natural extension of the Standard Model that involves varying coupling constants. This is a general expectation in any fundamental theory such as string theory, and there are good reasons for why new physics could appear at reachable energy scales. We investigate the collider phenomenology of models with varying gauge couplings where the variations are associated with real singlet scalar fields. We introduce three different heavy scalar fields that are responsible for the variations of the three gauge couplings of the Standard Model. This gives rise to many interesting collider signatures that we explore, resulting in exclusion limits based on the most recent LHC data, and predictions of the future discovery potential at the high-luminosity LHC.
We show that in a large class of models based on anomalous U(1) symmetry which addresses the fermion mass hierarchy problem, leptonic flavor changing processes are induced that are in the experimentally interesting range. The flavor violation occurs through the renormalization group evolution of the soft SUSY breaking parameters between the string scale and the U(1)_A breaking scale. We derive general expressions for the evolution of these parameters in the presence of higher dimensional operators. Several sources for the flavor violation are identified: flavor-dependent contributions to the soft masses from the U(1)_A gaugino, scalar mass corrections proportional to the trace of U(1)_A charge, non-proportional A-terms from vertex corrections, and the U(1)_A D-term. Quantitative estimates for the decays mu -> e gamma and tau -> mu gamma are presented in supergravity models which accommodate the relic abundance of neutralino dark matter.
So far the most sophisticated experiments have shown no trace of new physics at the TeV scale. Consequently, new models with unexplored parameter regions are necessary to explain current results, re-examine the existing data, and propose new experiments. In this Letter, we present a modified version of the $mu u$SSM supersymmetric model where a non-Universal extra U(1) gauge symmetry is added in order to restore an effective R-parity that ensures proton stability. We show that anomalies equations cancel without having to add emph{any} exotic matter, restricting the charges of the fields under the extra symmetry to a discrete set of values. We find that it is the viability of the model through anomalies cancellation what defines the conditions in which fermions interact with dark matter candidates via the exchange of $Z$ bosons. The strict condition of universality violation means that LHC constraints for a $Z$ mass do not apply directly to our model, allowing for a yet undiscovered relatively light $Z$, as we discuss both in the phenomenological context and in its implications for possible flavour changing neutral currents. Moreover, we explore the possibility of isospin violating dark matter interactions; we observe that this interaction depends, surprisingly, on the Higgs charges under the new symmetry, both limiting the number of possible models and allowing to analyse indirect dark matter searches in the light of well defined, particular scenarios.
An overview is given of recent progress on a variety of fronts in the global QCD analysis of the parton structure of the nucleon and its implication for collider phenomenology, carried out by various subgroups of the CTEQ collaboration.