No Arabic abstract
The Nobel Prize winning confirmation in 1998 of the accelerated expansion of our Universe put into sharp focus the need of a consistent theoretical model to explain the origin of this acceleration. As a result over the past two decades there has been a huge theoretical and observational effort into improving our understanding of the Universe. The cosmological equations describing the dynamics of a homogeneous and isotropic Universe are systems of ordinary differential equations, and one of the most elegant ways these can be investigated is by casting them into the form of dynamical systems. This allows the use of powerful analytical and numerical methods to gain a quantitative understanding of the cosmological dynamics derived by the models under study. In this review we apply these techniques to cosmology. We begin with a brief introduction to dynamical systems, fixed points, linear stability theory, Lyapunov stability, centre manifold theory and more advanced topics relating to the global structure of the solutions. Using this machinery we then analyse a large number of cosmological models and show how the stability conditions allow them to be tightly constrained and even ruled out on purely theoretical grounds. We are also able to identify those models which deserve further in depth investigation through comparison with observational data. This review is a comprehensive and detailed study of dynamical systems applications to cosmological models focusing on the late-time behaviour of our Universe, and in particular on its accelerated expansion. In self contained sections we present a large number of models ranging from canonical and non-canonical scalar fields, interacting models and non-scalar field models through to modified gravity scenarios. Selected models are discussed in detail and interpreted in the context of late-time cosmology.
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to mimetic dark matter or to dark radiation respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviours reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.
In this paper, we study a particular modified gravity Equation of State, the so-called Jaime-Jaber-Escamilla, that emerges from the first gravity modified action principle and can reproduce three cosmological viable $f(R)$ theories: the Starobinsky, Hu-Sawicki, and Exponential models . This EoS is a suitable candidate to reproduce the dynamical dark energy behaviour already reconstructed by the current data sets. Based on the joint statistical analysis, we found that our results are still in good agreement (within $1sigma$) with the $Lambda$CDM, while at perturbative level we notice that the matter power spectrum normalisation factor $sigma_8$ shows an agreement with SDSS and SNeIa+IRAS at 1-$sigma$ for the Starobinsky model and with SDSS-vec for the Hu & Sawicki and Exponential models. Furthermore, we found that for the $H_0$ values, Starobinsky and Hu & Sawicki show the least tension in comparison with PL18 TT. All these aspects cannot be observed textit{directly} from other alternatives theories, were a equation of state is difficult to compute analytically.
We perform a phase space analysis of a generalized modified gravity theory with nonminimally coupling between geometry and matter. We apply the dynamical system approach to this generalized model and find that in the cosmological context, different choices of Lagrangian density will apparently result in different phases of the Universe. By carefully choosing the variables, we prove that there is an attractor solution to describe the late time accelerating universe when the modified gravity is chosen in a simple power-law form of the curvature scalar. We further examine the temperature evolution based on the thermodynamic understanding of the model. Confronting the model with supernova type Ia data sets, we find that the nonminimally coupled theory of gravity is a viable model to describe the late time Universe acceleration.
The exploration of teleparallel gravity has been done from a dynamical systems point of view in order to be tested against the cosmological evolution currently observed. So far, the proposed autonomous systems have been restrictive over a constant dynamical variable, which contains information related to the dynamics on the $H_0$ value. It is therefore that in this paper we consider a generalization of the dynamical system by imposing a nonconstant degree of freedom over it which allows us to rewrite a generic autonomous dynamical analysis. We describe the treatment of our nonlinear autonomous system by studying the hyperbolic critical points and discuss an interesting phenomenological feature in regards to $H_0$: the possibility to obtain a best-fit value for this parameter in a cosmologically viable $f(T,B)$ model, a mixed power law. This result allows us to present a generic scenario in which it is possible to fix constraints to solve the $H_0$ tension at late times where its linearized solutions are considered.
A covariant modified gravity (MOG) is formulated by adding to general relativity two new degrees of freedom, a scalar field gravitational coupling strength $G= 1/chi$ and a gravitational spin 1 vector field $phi_mu$. The $G$ is written as $G=G_N(1+alpha)$ where $G_N$ is Newtons constant, and the gravitational source charge for the vector field is $Q_g=sqrt{alpha G_N}M$, where $M$ is the mass of a body. Cosmological solutions of the theory are derived in a homogeneous and isotropic cosmology. Black holes in MOG are stationary as the end product of gravitational collapse and are axisymmetric solutions with spherical topology. It is shown that the scalar field $chi$ is constant everywhere for an isolated black hole with asymptotic flat boundary condition. A consequence of this is that the scalar field loses its monopole moment radiation.